
System Composer™
Reference

R2020b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ Reference
© COPYRIGHT 2019–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions
1

Classes
2

Blocks
3

iii

Contents

Functions

1

addChoice
Add variant choices to variant component

Syntax
compList = addChoice(variantComponent,choices)
compList = addChoice(variantComponent,choices,labels)

Description
compList = addChoice(variantComponent,choices) creates variant choices specified in
choices in the specified variant component and returns their handles.

compList = addChoice(variantComponent,choices,labels) creates variant choices
specified in choices with labels labels in the specified variant component and returns their
handles.

Examples

Add Choices

Create a model, get the root architecture, create one variant component, and add two choices for the
variant component.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
variant = addVariantComponent(arch,'Component1');
compList = addChoice(variant,{'Choice1','Choice2'});

Input Arguments
variantComponent — Architecture component
variant component object

Architecture component where variant choices are added, specified as a
systemcomposer.arch.VariantComponent object.

choices — Variant choice names
cell array of character vectors

Variant choice names, specified as a cell array of character vectors. The length of choices must be
the same as labels.
Data Types: char

labels — Variant choice labels
cell array of character vectors

Variant choice labels, specified as a cell array of character vectors. The length of labels must be the
same as choices.

1 Functions

1-2

Data Types: char

Output Arguments
compList — Created components
array of components

Created components, returned as an array of systemcomposer.arch.Component objects. This
array is the same size as choices and labels.

See Also
addVariantComponent | getActiveChoice | getChoices | makeVariant

Topics
“Create Variants”

Introduced in R2019a

 addChoice

1-3

addComponent
Add components to architecture

Syntax
components = addComponent(architecture,compNames)
components = addComponent(architecture,compNames,stereotypes)

Description
components = addComponent(architecture,compNames) adds a set of components specified
by the array of names.

components = addComponent(architecture,compNames,stereotypes) applies stereotypes
specified in the stereotypes to the new components.

Examples

Create Model with Two Components

Create a model, get the root architecture, and create components.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
names = {'Component1','Component2'};
comp = addComponent(arch,names);

Input Arguments
architecture — Parent architecture
architecture object

Parent architecture to which component is added, specified as a
systemcomposer.arch.Architecture object.

compNames — Names of components
cell array of character vectors

Name of components, specified as a cell array of character vectors. The length of compNames must
be the same as stereotypes.
Data Types: char

stereotypes — Stereotypes to apply to components
cell array of character vectors

Stereotypes to apply to components, specified as a cell array of character vectors. Each element is
the fully qualified stereotype name for the corresponding component in the form
'<profile>.<stereotype>'.

1 Functions

1-4

Data Types: char

Output Arguments
components — Created components
cell array of component objects

Created components, returned as a cell array of systemcomposer.arch.Component objects.

See Also
addPort | connect

Topics
“Components”

Introduced in R2019a

 addComponent

1-5

addComponent
Package: systemcomposer.View

Add component to view given path

Syntax
viewComp = addComponent(object,compPath)

Description
viewComp = addComponent(object,compPath) adds the component with the specified path.

addComponent is a method for the class systemcomposer.view.ViewArchitecture.

Input Arguments
object — View architecture
view architecture object

View architecture, specified as a systemcomposer.view.ViewArchitecture object.

compPath — Path to the component
character vector

Path to the component including the name of the top-model, specified as a character vector.
Data Types: char

Output Arguments
viewComp — View component
view component object

View component, returned as a systemcomposer.view.ViewComponent object.

See Also
removeComponent | systemcomposer.view.BaseViewComponent |
systemcomposer.view.ComponentOccurrence | systemcomposer.view.ViewArchitecture |
systemcomposer.view.ViewComponent | systemcomposer.view.ViewElement

Introduced in R2019b

1 Functions

1-6

addVariantComponent
Add variant components to architecture

Syntax
variantList = addVariantComponent(architecture,variantComponents)
variantList = addVariantComponent(architecture,variantComponents,'Position',
position)

Description
variantList = addVariantComponent(architecture,variantComponents) adds a set of
components specified by the array of names.

variantList = addVariantComponent(architecture,variantComponents,'Position',
position) creates a variant component the architecture at a given position.

Examples

Create Variant with Two Components

Create model, get root architecture, and create a component with two variants.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
names = {'Component1','Component2'}
variants = addVariantComponent(arch,names);

Input Arguments
architecture — Parent architecture
architecture object

Parent architecture to which component is added, specified as a
systemcomposer.arch.Architecture object.

variantComponents — Names of variant components
cell array of character vectors

Names of variant components, specified as a cell array of character vectors.
Data Types: char

position — Vector that specifies location of top corner and bottom corner of component
1x4 array

Vector that specifies location of top corner and bottom corner of component, specified as a 1x4 array.
The array denotes the top corner in terms of its x and y coordinates followed by the x and y
coordinates of the bottom corner. When adding more than one variant component, a matrix of size
[Nx4] may be specified where N is the number of variant components being added.

 addVariantComponent

1-7

Data Types: double

Output Arguments
variantList — Handles to variant components
array of components

Handles to variant components, returned as an array of
systemcomposer.arch.VariantComponent objects. This array is the same size as
variantComponents.

See Also
addChoice | addPort | connect | getActiveChoice | setActiveChoice

Topics
“Components”

Introduced in R2019a

1 Functions

1-8

addElement
Add signal interface element

Syntax
element = addElement(interface,name)
element = addElement(interface,name,Name,Value)

Description
element = addElement(interface,name) adds an element to a signal interface with default
properties.

element = addElement(interface,name,Name,Value) sets the properties of the element as
specified in Name,Value.

Examples

Add an Interface and an Element

Add an interface newsignal to the interface dictionary of the model, and add an element
newelement with type double.

arch = systemcomposer.createModel('newmodel',0);
interface = addInterface(arch.InterfaceDictionary,'newsignal');
element = addElement(interface,'newelement','Type','double')

element =
 SignalElement with properties:

 Interface: [1×1 systemcomposer.interface.SignalInterface]
 Name: 'newelement'
 Type: 'double'
 Dimensions: '1'
 Units: ''
 Complexity: 'real'
 Minimum: '[]'
 Maximum: '[]'
 Description: ''
 UUID: '2b47eaa6-191a-439a-ba2b-2bcc3209b912'
 ExternalUID: ''

Input Arguments
interface — New interface object
signal interface

New interface object, specified as a systemcomposer.interface.SignalInterface object.

 addElement

1-9

name — Name of new element
character vector

Name of new element with a valid variable name, specified as a character vector.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type', 'double'

Type — Data type of element
valid data type character vector

Data type of element, specified as the comma-separated pair consisting of 'Type' and a valid data
type character vector.
Data Types: char

Dimensions — Dimensions of element
positive integer array

Dimensions of element, specified as the comma-separated pair consisting of 'Dimensions' and a
positive integer array. Each element of the array is the size of the element in the corresponding
direction. A scalar integer indicates a scalar or vector element and a row vector with two integers
indicates a matrix element.
Data Types: double

Complexity — Complexity of element
'real' | 'complex'

Complexity of element, specified as the comma-separated pair 'Complexity' and 'real' if the
element is purely real, or 'complex' if an imaginary part is allowed.
Data Types: char

Output Arguments
element — New interface element object
signal element

New interface element object, returned as a systemcomposer.interface.SignalElement object.

See Also
getElement | getInterfaces | linkDictionary | systemcomposer.createDictionary |
unlinkDictionary

Topics
“Define Interfaces”

1 Functions

1-10

Introduced in R2019a

 addElement

1-11

addPort
Add ports to architecture

Syntax
ports = addPort(architecture,portNames,portTypes)
ports = addPort(architecture,portNames,portTypes,stereotypes)

Description
ports = addPort(architecture,portNames,portTypes) adds a set of ports with specified
names.

ports = addPort(architecture,portNames,portTypes,stereotypes) also applies
stereotypes to a set of ports.

Examples

Add Ports to Architecture

Create a model, get the root architecture, add a component, and add ports.

model = systemcomposer.createModel('archModel');
rootArch = get(model,'Architecture');
newcomponent = addComponent(rootArch,'NewComponent');
newport = addPort(newcomponent.Architecture,'NewCompPort','in');

Input Arguments
architecture — Component architecture
architecture object

Component architecture, specified as a systemcomposer.arch.Architecture object. addPort
adds ports to the architecture of a component. Use <component>.Architecture to access the
architecture of a component.

portNames — Names of ports
cell array of character vectors

Names of ports, specified as a cell array of character vectors. If necessary, System Composer appends
a number to the port name to ensure uniqueness. The size of portNames, portTypes, and
stereotypes must be the same.
Data Types: char

portTypes — Port directions
cell array of character vectors

Port directions, specified as a cell array of character vectors. A port direction can be either 'in' or
'out'.

1 Functions

1-12

Data Types: char

stereotypes — Stereotypes to apply to components
cell array of stereotype objects

Stereotypes to apply to components, specified as a cell array of
systemcomposer.profile.Stereotype objects. Each stereotype in the array must either be a
stereotype that applies to all element types, or a port stereotype.

Output Arguments
ports — Created ports
cell array of ports

Created ports, returned as a cell array of systemcomposer.arch.ComponentPort or
systemcomposer.arch.ArchitecturePort objects.

See Also
addComponent | connect | destroy | systemcomposer.arch.BasePort

Topics
“Ports”

Introduced in R2019a

 addPort

1-13

addInterface
Create named interface in interface dictionary

Syntax
interface = addInterface(dictionary,name)
interface = addInterface(dictionary,name,'SimulinkBus',busObject)

Description
interface = addInterface(dictionary,name) adds a named interface to a specified interface
dictionary.

interface = addInterface(dictionary,name,'SimulinkBus',busObject) constructs an
interface that mirrors an existing Simulink® bus object.

Examples

Add an Interface

Add an interface 'newInterface' to the specified data dictionary.

interface = addInterface(dictionary,'newInterface')

Add a Simulink Bus Mirrored Interface

Add a named interface that mirrors an existing Simulink bus object to a specified dictionary.

interface = addInterface(dictionary,'newInterface','SimulinkBus','myBus')

Input Arguments
dictionary — Data dictionary attached to architecture model
dictionary object

Data dictionary attached to architecture model, specified as a
systemcomposer.interface.Dictionary object. This is the default data dictionary that defines
local interfaces or an external data dictionary that carries interface definitions. If the model links to
multiple data dictionaries, then dictionary must be the one that carries interface definitions. For
information on how to create a dictionary, see systemcomposer.createDictionary.

name — Name of new interface
character vector

Name of new interface, specified as a character vector.
Data Types: char

1 Functions

1-14

busObject — Simulink bus object that new interface mirrors
bus object

Simulink bus object that new interface mirrors where the interface is already defined, specified as a
Simulink bus object.

Output Arguments
interface — New interface object
signal interface object

New interface object, returned as a systemcomposer.interface.SignalInterface object.

See Also
addElement | getInterface | getInterfaceNames | linkDictionary |
systemcomposer.createDictionary

Topics
“Define Interfaces”

Introduced in R2019a

 addInterface

1-15

addProperty
Define a custom property for a stereotype

Syntax
property = addProperty(stereotype,name)
property = addProperty(stereotype,name,Name,Value)

Description
property = addProperty(stereotype,name) returns a new property definition with name
that is contained in stereotype.

property = addProperty(stereotype,name,Name,Value)returns a property definition that
is configured with specified property values.

Examples

Add a Property

Add a component stereotype and add a 'VoltageRating' property with value 5.

profile = systemcomposer.profile.Profile.createProfile('myProfile');
stereotype = addStereotype(profile,'electricalComponent','AppliesTo','Component');
property = addProperty(stereotype,'VoltageRating','DefaultValue','5');

Input Arguments
stereotype — Stereotype to which property is added
stereotype object

Stereotype to which property is added, specified as a systemcomposer.profile.Stereotype
object.

name — Name of property
character vector

Name of property unique within the stereotype, specified as a character vector.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Type', 'double'

1 Functions

1-16

Type — Property data type
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

Type of this property. One of valid data types or the name of a MATLAB class that defines an
enumeration. For more information, see “Use Enumerated Data in Simulink Models”.
Example: addProperty(stereotype,'Color','Type','BasicColors')
Data Types: char

Dimensions — Dimensions of property
positive integer array

Dimensions of property, specified as a positive integer array. Empty implies no restriction.
Data Types: double

Min — Minimum value
numeric

Optional minimum value of this property. To set both 'Min' and 'Max' together, use the
setMinAndMax method.
Example: setMinAndMax(property, min, max)
Data Types: double

Max — Maximum value
numeric

Optional maximum value of this property. To set both 'Min' and 'Max' together, use the
setMinAndMax method.
Example: setMinAndMax(property, min, max)
Data Types: double

Units — Property units
character vector

Units of the property value, specified as a character vector. If specified, all values of this property on
model elements are checked for consistency with these units according to Simulink unit checking
rules. For more information, see “Unit Consistency Checking and Propagation”.
Data Types: char

DefaultValue — Default value
cell array of string value and string unit | string expression

Default value of this property, specified as a string expression or a cell array of string value and string
unit.
Data Types: double

Output Arguments
property — Created property
property object

 addProperty

1-17

Created property, returned as a systemcomposer.profile.Property object.

See Also
getProperty | setProperty

Topics
“Define Profiles and Stereotypes”
“Set Tags and Properties for Analysis”

Introduced in R2019a

1 Functions

1-18

addStereotype
Add stereotype to profile

Syntax
stereotype = addStereotype(profile,stereotypeName)
stereotype = addStereotype(profile,stereotypeName,Name,Value)

Description
stereotype = addStereotype(profile,stereotypeName) adds a new stereotype with the
specified name.

stereotype = addStereotype(profile,stereotypeName,Name,Value) specifies the
properties of the stereotype.

Examples

Add Component Stereotype

Add a component stereotype to the profile.

addStereotype(profile,'electricalComponent','AppliesTo','Component')

Input Arguments
profile — Profile object
profile

Profile object, specified as a systemcomposer.profile.Profile object.

stereotypeName — Name of new stereotype
character vector

Name of new stereotype, specified as a character vector. The name of the stereotype must be unique
within the profile.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: addStereotype(profile,'electricalComponent','AppliesTo','Component')

Name, Value — Stereotype properties and values
positive integer array

 addStereotype

1-19

See systemcomposer.profile.Stereotype for stereotype properties and values.

Output Arguments
stereotype — Created stereotype
stereotype object

Created stereotype, returned as a systemcomposer.profile.Stereotype object.

See Also
getStereotype

Topics
“Create a Profile and Add Stereotypes”

Introduced in R2019a

1 Functions

1-20

AnyComponent
Package: systemcomposer.query

Create query to select all components in model

Syntax
query = AnyComponent()

Description
query = AnyComponent() creates a query object that the find method and the
createViewArchitecture method use to select all components in the model.

Examples

Select All Components in Model

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*;

Open the Simulink project file.

scKeylessEntrySystem

Open the model.
m = systemcomposer.openModel('KeylessEntryArchitecture');

Create a query to find all components and list the second.
constraint = AnyComponent();
components = find(m,constraint,'Recurse',true,'IncludeReferenceModels',true);
components(2)

ans =

 1×1 cell array

 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller'}

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

See Also
createViewArchitecture | find | systemcomposer.query.Constraint

 AnyComponent

1-21

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

1 Functions

1-22

applyProfile
Apply profile to a model

Syntax
applyProfile(modelObject,profileFile)

Description
applyProfile(modelObject,profileFile) applies the profile to an architecture model and
makes all of the constituent stereotypes available.

Input Arguments
modelObject — Architecture model object
model object

Architecture model object, specified as a systemcomposer.arch.Model object.

profileFile — Name of profile
character vector

Name of profile, specified as a character vector.
Example: 'SystemProfile'
Data Types: char

See Also
createProfile | removeProfile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 applyProfile

1-23

applyStereotype
Apply stereotype to architecture model element

Syntax
applyStereotype(element,stereotype)

Description
applyStereotype(element,stereotype) applies a stereotype to an architecture model element.
The function adds the specified stereotype if it is not already applied to a model element. Stereotypes
can be applied to architecture, component, port, and connector model elements.

Input Arguments
element — Model element
architecture object | component object | port object | connector object

Model element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, or systemcomposer.arch.Connector object.

stereotype — Fully qualified name of stereotype
character vector

Fully qualified name of stereotype, specified as a character vector in the form
'<profile>.<stereotype>'. The profile must already be applied to the model.
Data Types: char

See Also
batchApplyStereotype | getStereotypes | removeStereotype

Topics
“Use Stereotypes and Profiles”

Introduced in R2019a

1 Functions

1-24

batchApplyStereotype
Apply stereotype to all elements in specified architecture

Syntax
batchApplyStereotype(architecture,elementType,stereotype)
batchApplyStereotype(architecture,elementType,stereotype,'Recurse',flag)

Description
batchApplyStereotype(architecture,elementType,stereotype) applies the stereotype
to all elements that match the elementType within the architecture.

batchApplyStereotype(architecture,elementType,stereotype,'Recurse',flag)
applies the stereotype to all elements that match the elementType within the architecture and
its sub-architectures.

Examples

Apply a Stereotype to All Connectors

Apply the standardConn stereotype in the GeneralProfile profile to all connectors within the
architecture arch.

batchApplyStereotype(arch,'Connector','GeneralProfile.standardConn');

Input Arguments
architecture — Architecture model element
architecture object

Architecture model element, specified as a systemcomposer.arch.Architecture object. Parent
architecture layer for all components to attach the stereotype.

elementType — Type of architecture element
'Component' | 'Port' | 'Connector' | 'Instance'

Type of architecture element to apply the stereotype, specified as a character vector of
'Component', 'Port', 'Connector', or 'Instance'. The stereotype must be applicable for this
element type.
Data Types: char

stereotype — Stereotype to apply
character vector

Stereotype to apply, specified as a character vector in the form '<profile>.<stereotype>'. The
stereotype must be applicable to components.
Data Types: char

 batchApplyStereotype

1-25

flag — Apply stereotype recursively
false or 0 (default) | true or 1

Apply stereotype recursively, specified as a logical or numeric value. If flag is 1 (true), the
stereotype is applied to the elements in the architecture and its sub-architectures.
Data Types: logical

See Also
applyStereotype | getStereotypes | removeStereotype

Topics
“Use Stereotypes and Profiles”

Introduced in R2019a

1 Functions

1-26

close
Close profile

Syntax
close(profile,force)

Description
close(profile,force) closes the profile. If there are unsaved changes, you will receive an error
unless the argument force is true.

Tip Use closeAll to close all loaded profiles.

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

force — Force the close
false or 0 (default) | true or 1

Force close the profile, specified as a logical or numeric value 1 (true) or 0 (false).
Data Types: logical

See Also
find | load | open | save | systemcomposer.profile.Profile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 close

1-27

close
Close allocation set

Syntax
close(allocSet,force)

Description
close(allocSet,force) closes the allocation set. If there are unsaved changes, you will receive
an error unless the argument force is true.

Tip Use closeAll to close all loaded allocation sets.

Input Arguments
allocSet — Allocation set
allocation set object

Allocation set, specified as a systemcomposer.allocation.AllocationSet object.

force — Force the close
false or 0 (default) | true or 1

Force close the allocation set, specified as a logical or numeric value 1 (true) or 0 (false).
Data Types: logical

See Also
createScenario | deleteScenario | getScenario | load

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-28

close
Package: systemcomposer.arch

Close System Composer model

Syntax
close(objModel)

Description
close(objModel) closes the specified model in System Composer.

Examples

Create, Open, and Close a Model

Model = systemcomposer.createModel('modelName');
open(Model)
close(Model)

Input Arguments
objModel — Model to close in editor
model object

Model to close in the System Composer editor, specified as a systemcomposer.arch.Model object.

See Also
createModel | loadModel | save

Topics
“Create an Architecture Model”

Introduced in R2019a

 close

1-29

systemcomposer.allocation.Allocation
Allocation between source and target element

Description
The systemcomposer.allocation.Allocation defines the allocation between the source
element and the target element.

Creation
% Create two allocations between four elements in
% the default scenario, Scenario 1.
defaultScenario = allocSet.getScenario('Scenario 1');
defaultScenario.allocate(sourceElement1,sourceElement2);
defaultScenario.allocate(sourceElement3,sourceElement4);

Properties
Source — Source element
element object

Source element, returned as a systemcomposer.arch.Element object.

Target — Target element
element object

Target element, returned as a systemcomposer.arch.Element object.

Scenario — Allocation scenario
allocation scenario object

Allocation scenario, returned as a systemcomposer.allocation.AllocationScenario object.

See Also
allocate | getAllocatedFrom | getAllocatedTo | getAllocation | getScenario

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-30

allocate
Create new allocation

Syntax
allocation = allocate(sourceElement,targetElement)

Description
allocation = allocate(sourceElement,targetElement) creates a new allocation between
the source element and the target element.

Input Arguments
sourceElement — Source element for allocation
element object | character vector

Source element for allocation, specified as a systemcomposer.arch.Element object or the name
of an element as a character vector.

targetElement — Target element for allocation
element object | character vector

Target element for allocation, specified as a systemcomposer.arch.Element object or the name of
an element as a character vector.

Output Arguments
allocation — Allocation between source and target element
allocation object

Allocation between source and target element, returned as a
systemcomposer.allocation.Allocation object.

See Also
deallocate | getAllocation

Topics
“Create and Manage Allocations”

Introduced in R2020b

 allocate

1-31

systemcomposer.allocation.AllocationScenario
Manage allocation scenario

Description
The systemcomposer.allocation.AllocationScenario class defines a collection of allocations
between elements in the source model to elements in the target model.

Creation
scenario = createScenario(myAllocationSet);

Properties
Name — Name of allocation scenario
character vector

Name of allocation scenario, returned as a character vector.
Data Types: char

Allocations — Allocations in the scenario
cell array of allocation objects

Allocations in the scenario, returned as a cell array of systemcomposer.allocation.Allocation
objects.

AllocationSet — Allocation set that this scenario belongs to
allocation set object

Allocation set that this scenario belongs to, returned as an
systemcomposer.allocation.AllocationSet object.

Description — Description of allocation set
character vector

Description of allocation set, returned as a character vector.
Data Types: char

Object Functions
allocate Create new allocation
destroy Delete allocation scenario
deallocate Delete allocation between source and target element
getAllocation Get allocation between source and target elements
getAllocatedFrom Get allocation target
getAllocatedTo Get allocation source

1 Functions

1-32

See Also
createScenario

Topics
“Create and Manage Allocations”

Introduced in R2020b

 systemcomposer.allocation.AllocationScenario

1-33

deallocate
Delete allocation between source and target element

Syntax
deallocate(sourceElement,targetElement)

Description
deallocate(sourceElement,targetElement) deletes allocation, if one exists, between a source
and a target element.

Input Arguments
sourceElement — Source element to delete allocation
element object | character vector

Source element to delete allocation, specified as a systemcomposer.arch.Element object or the
name of an element as a character vector.

targetElement — Target element to delete allocation
element object | character vector

Target element to delete allocation, specified as a systemcomposer.arch.Element object or the
name of an element as a character vector.

See Also
allocate | getAllocatedFrom | getAllocatedTo | getAllocation

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-34

destroy
Delete allocation scenario

Syntax
destroy()

Description
destroy() deletes the existing allocation scenario in the allocation set.

See Also
createScenario | deleteScenario | getScenario

Topics
“Create and Manage Allocations”

Introduced in R2020b

 destroy

1-35

getAllocation
Get allocation between source and target elements

Syntax
allocation = getAllocation(sourceElement,targetElement)

Description
allocation = getAllocation(sourceElement,targetElement) get the allocation, if one
exists, between the source and target element.

Input Arguments
sourceElement — Source element for allocation
element object | character vector

Source element for allocation, specified as a systemcomposer.arch.Element object or the name
of the element as a character vector.

targetElement — Target element for allocation
element object | character vector

Target element for allocation, specified as a systemcomposer.arch.Element object or the name of
the element as a character vector.

Output Arguments
allocation — Allocation between source and target element
allocation object

Allocation between source and target element, returned as a
systemcomposer.allocation.Allocation object.

See Also
allocate | deallocate | getAllocatedFrom | getAllocatedTo

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-36

getAllocatedFrom
Get allocation target

Syntax
targetElements = getAllocatedFrom(element)

Description
targetElements = getAllocatedFrom(element) gets all the elements that are allocated from
the specified source element.

Input Arguments
element — Source element
element object | character vector

Source element, specified as a systemcomposer.arch.Element object or an element name as a
character vector.

Output Arguments
targetElements — Target elements
array of element objects

Target elements that are allocated from the specified element, returned as an array of
systemcomposer.arch.Element objects.

See Also
allocate | deallocate | getAllocatedTo

Topics
“Create and Manage Allocations”

Introduced in R2020b

 getAllocatedFrom

1-37

getAllocatedTo
Get allocation source

Syntax
sourceElements = getAllocatedTo(element)

Description
sourceElements = getAllocatedTo(element) gets all the source elements allocated to a
specified element.

Input Arguments
element — Target element
element object | character vector

The element for which you target to find the source elements, specified as a
systemcomposer.arch.Element object or a name of the element as a character vector.

Output Arguments
sourceElements — Source elements
array of element objects

Source elements that are allocated to the specified element, specified as an array of
systemcomposer.arch.Element objects.

See Also
allocate | deallocate | getAllocatedFrom

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-38

closeAll
Close all loaded allocation sets

Syntax
systemcomposer.allocation.AllocationSet.closeAll()

Description
systemcomposer.allocation.AllocationSet.closeAll() closes all allocation sets without
saving.

Tip Use close to close one allocation set.

See Also
createScenario | deleteScenario | getScenario | load

Topics
“Create and Manage Allocations”

Introduced in R2020b

 closeAll

1-39

closeAll
Close all open profiles

Syntax
systemcomposer.profile.Profile.closeAll()

Description
systemcomposer.profile.Profile.closeAll() force closes all open profiles.

Tip Use close to close one open profile.

See Also
find | load | open | save | systemcomposer.profile.Profile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

1 Functions

1-40

connect
Create architecture model connections

Syntax
connectors = connect(srcComponent,destComponent)
connectors = connect(srcPort,destPort)
connectors = connect(architecture,[srcComponent,srcComponent,...],[
destComponent,destComponent,...])
connectors = connect(architecture,[],destComponent)
connectors = connect(architecture,srcComponent,[])
connectors = connect(___ ,Name,Value)

Description
connectors = connect(srcComponent,destComponent) connects the unconnected output
ports of srcComponent to the unconnected input ports of destComponent based on matching port
names, and returns a handle to the connector.

connectors = connect(srcPort,destPort) connects a source port and a destination port.

connectors = connect(architecture,[srcComponent,srcComponent,...],[
destComponent,destComponent,...]) connects arrays of components in the architecture.

connectors = connect(architecture,[],destComponent) connects a parent architecture
input port to a destination child component.

connectors = connect(architecture,srcComponent,[]) connects a source child component
to a parent architecture output port.

connectors = connect(___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to the input arguments in previous syntaxes.

Examples

Connect System Composer Components

Create and connect two components.

Create top level architecture model.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName);
rootArch = get(arch,'Architecture');

Create two new components.

names = {'Component1','Component2'};
newComponents = addComponent(rootArch,names);

 connect

1-41

Add ports to components.

outPort1 = addPort(newComponents(1).Architecture,'testSig','out');
inPort1 = addPort(newComponents(2).Architecture,'testSig','in');

Connect components.

conns = connect(newComponents(1),newComponents(2));

View model.

systemcomposer.openModel(modelName);

Improve layout.

Simulink.BlockDiagram.arrangeSystem(modelName)

Connect System Composer Ports

Create and connect two ports.

Create top level architecture model.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName);
rootArch = get(arch,'Architecture');

Create two new components.

names = {'Component1','Component2'};
newcomponents = addComponent(rootArch,names);

Add ports to components.

outPort1 = addPort(newComponents(1).Architecture,'testSig','out');
inPort1 = addPort(newComponents(2).Architecture,'testSig','in');

Extract component ports.

srcPort = getPort(newComponents(1),'testSig');
destPort = getPort(newComponents(2),'testSig');

Connect ports.

conns = connect(srcPort,destPort);

View model.

systemcomposer.openModel(modelName);

Improve layout.

Simulink.BlockDiagram.arrangeSystem(modelName)

1 Functions

1-42

Connect by Selecting Destination Element

Create and connect destination architecture port interface element to component.

Create top level architecture model.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName);
rootArch = get(arch,'Architecture');

Create new component.

newComponent = addComponent(rootArch,'Component1');

Add destination architecture ports to component and architecture.

outPortComp = addPort(newComponent.Architecture,'testSig','out');
outPortArch = addPort(rootArch,'testSig','out');

Extract corresponding port objects.

compSrcPort = getPort(newComponent,'testSig');
archDestPort = getPort(rootArch,'testSig');

Add interface, interface element, and associate interface with architecture port.

interface = arch.InterfaceDictionary.addInterface('interface');
interface.addElement('x');
archDestPort.setInterface(interface);

Select element on architecture port and establish connection.

conns = connect(compSrcPort,archDestPort,'DestinationElement','x');

View model.

systemcomposer.openModel(modelName);

Improve layout.

Simulink.BlockDiagram.arrangeSystem(modelName)

Input Arguments
architecture — Interface and underlying structural definition of model or component
architecture object

Interface and underlying structural definition of model or component, specified as a
systemcomposer.arch.Architecture object.

srcComponent — Source component
component object

Source component, specified as a systemcomposer.arch.Component object.

destComponent — Destination component
component object

 connect

1-43

Destination component, specified as a systemcomposer.arch.Component object.

srcPort — Source port
port object

Source port to connect, specified as a systemcomposer.arch.ComponentPort or
systemcomposer.arch.ArchitecturePort object.

destPort — Destination port
port object

Destination port to connect, specified as a systemcomposer.arch.ComponentPort or
systemcomposer.arch.ArchitecturePort object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: connect(archPort,compPort,'SourceElement','a')

Stereotype — Option to apply stereotype to connector
stereotype object

Option to apply stereotype to connector, specified as the comma-separated pair consisting of
'Stereotype' and a systemcomposer.profile.Stereotype object.

Rule — Option to specify rule for connections
'name' (default) | 'interface'

Option to specify rule for connections, specified as the comma-separated pair consisting of 'Rule'
and 'name' based on name of ports or 'interface' based on interface name on ports.

MultipleOutputConnectors — Option to allow multiple destination components
false or 0 (default) | true or 1

Option for the same source component to connect to multiple destination components, specified as
the comma-separated pair consisting of 'MultipleOutputConnectors' and a numeric or logical 1
(true) or 0 (false).

SourceElement — Option to select source element for connection
character vector

Option to select source element for connection, specified as the comma-separated pair consisting of
'SourceElement' and a character vector of the name of the signal element.
Data Types: char

DestinationElement — Option to select destination element for connection
character vector

Option to select destination element for connection, specified as the comma-separated pair consisting
of 'DestinationElement' and a character vector of the name of the signal element.
Data Types: char

1 Functions

1-44

Output Arguments
connectors — Created connections
array of connections

Created connections, returned as an array of systemcomposer.arch.Connector objects.

See Also
addComponent | addElement | addInterface | addPort | createModel |
getDestinationElement | getPort | getSourceElement | openModel | setInterface

Topics
“Create an Architecture Model”

Introduced in R2019a

 connect

1-45

createAllocationSet
Create a new allocation set

Syntax
allocSet = systemcomposer.allocation.createAllocationSet(name, sourceModel,
targetModel)

Description
allocSet = systemcomposer.allocation.createAllocationSet(name, sourceModel,
targetModel) creates a new allocation set with the given name in which the source and target
models are provided.

Examples

Create an allocation set and open in Allocation Editor
% Create the allocation set with name MyNewAllocation.
systemcomposer.allocation.createAllocationSet('MyNewAllocation',...
 'Source_Model_Allocation','Target_Model_Allocation');

% Open the allocation editor
systemcomposer.allocation.editor()

Input Arguments
name — Name of allocation set
model object | character vector

Name of allocation set, specified as a systemcomposer.arch.Model object or the name of a model
as a character vector.

sourceModel — Source model for allocation
model object | character vector

Source model for allocation, specified as a systemcomposer.arch.Model object or the name of a
model as a character vector.

targetModel — Target model for allocation
model object | character vector

Target model for allocation, specified as a systemcomposer.arch.Model object or the name of a
model as a character vector.

Output Arguments
allocSet — Allocation set
allocation set object

1 Functions

1-46

Allocation set created, returned as a systemcomposer.allocation.AllocationSet object.

See Also
closeAll | load | open

Topics
“Create and Manage Allocations”

Introduced in R2020b

 createAllocationSet

1-47

createAnonymousInterface
Create and set anonymous interface for port

Syntax
interface = createAnonymousInterface(port)

Description
interface = createAnonymousInterface(port) creates and sets an anonymous interface for a
port.

Input Arguments
port — Port
port object

Port, specified as a systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort object.

Output Arguments
interface — Signal interface
signal interface object

Signal interface, returned as a systemcomposer.interface.SignalInterface object.

See Also
systemcomposer.arch.ArchitecturePort | systemcomposer.arch.ComponentPort

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-48

createDictionary
Create data dictionary

Syntax
dict_id = systemcomposer.createDictionary(dictionaryName)

Description
dict_id = systemcomposer.createDictionary(dictionaryName) creates a new Simulink
data dictionary to hold interfaces and returns a handle to the
systemcomposer.interface.Dictionary object.

Examples

Create a New Dictionary

dict_id = systemcomposer.createDictionary('new_dictionary.sldd')

Input Arguments
dictionaryName — Name of new data dictionary
character vector

Name of new data dictionary, specified as a character vector. The name must include the .sldd
extension.
Example: 'new_dictionary.sldd'
Data Types: char

Output Arguments
dict_id — Handle to the dictionary
dictionary object

Handle to the dictionary, returned as a systemcomposer.interface.Dictionary object.

See Also
linkDictionary | systemcomposer.openDictionary | unlinkDictionary

Topics
“Save, Link, and Delete Interfaces”

Introduced in R2019a

 createDictionary

1-49

createModel
Create a System Composer model

Syntax
objModel = systemcomposer.createModel(modelName)

Description
objModel = systemcomposer.createModel(modelName) creates a System Composer model
with name modelName and returns its handle.

createModel is the constructor method for the class systemcomposer.arch.Model.

Examples
model = systemcomposer.createModel('model_name')

model =

 model with properties:

 Name: 'model_name'
 Architecture: [1×1 systemcomposer.arch.Architecture]
 SimulinkHandle: 2.0005
 Views: [0×0 systemcomposer.view.ViewArchitecture]
 Profiles: [0×0 systemcomposer.profile.Profile]
 InterfaceDictionary: [1×1 systemcomposer.interface.Dictionary]

Input Arguments
modelName — Name of new model
character vector

Name of new model, specified as a character vector.
Data Types: char

Output Arguments
objModel — Model handle
model object

Model handle, returned as a systemcomposer.arch.Model object.

See Also
loadModel | open | save

Topics
“Compose Architecture Visually”

1 Functions

1-50

Introduced in R2019a

 createModel

1-51

systemcomposer.profile.Profile.createProfile
Create profile

Syntax
profile = systemcomposer.profile.Profile.createProfile(profileName,dirPath)
profile = systemcomposer.profile.Profile.createProfile(profileName)

Description
profile = systemcomposer.profile.Profile.createProfile(profileName,dirPath)
creates a new profile object of type systemcomposer.profile.Profile to setup a set of
stereotypes. The dirPath argument specifies the directory in which the profile is to be created.

profile = systemcomposer.profile.Profile.createProfile(profileName) creates a
new profile with name profileName.

Example
profile = systemcomposer.profile.Profile.createProfile('new_profile')

Input Arguments
profileName — Name of new profile
character vector

Name of new profile, specified as a character vector.
Example: 'new_profile'
Data Types: char

dirPath — Directory path
character vector

Directory path where the profile will be saved, specified as a character vector.
Example: 'C:\Temp\MATLAB'
Data Types: char

Output Arguments
profile — Profile handle
profile object

Profile handle, returned as a systemcomposer.profile.Profile object.

See Also
applyProfile | find | load | loadProfile | open | removeProfile | save

1 Functions

1-52

Topics
“Create a Profile and Add Stereotypes”

Introduced in R2019a

 systemcomposer.profile.Profile.createProfile

1-53

createScenario
Create new empty allocation scenario

Syntax
scenario = createScenario(name)

Description
scenario = createScenario(name) creates a new empty allocation scenario in the allocation set
with the given name.

Input Arguments
name — Name of allocation set
allocation set object | character vector

Name of allocation set, specified as a systemcomposer.allocation.AllocationSet object or
the name as a character vector.

Output Arguments
scenario — New empty allocation scenario
allocation scenario object

New empty allocation scenario, returned as a
systemcomposer.allocation.AllocationScenario object.

See Also
deleteScenario | getScenario

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-54

createSimulinkBehavior
Create Simulink model and link component to it

Syntax
createSimulinkBehavior(component,modelName)

Description
createSimulinkBehavior(component,modelName) creates a new Simulink model with the same
interface as the component and links the component to the new model. This method works only if the
component has no children.

Examples

Create a Simulink Model and Link

Create a Simulink behavior model for the component robotComp in Robot.slx and link the
component to the model.

createSimulinkBehavior(robotComp,'Robot');

Input Arguments
component — Architecture component
component object

Architecture component with no children, specified as a systemcomposer.arch.Component object.

modelName — Model name
character vector

Model name of the Simulink model created by this function, specified as a character vector.
Example: 'Robot'
Data Types: char

See Also
inlineComponent | linkToModel | saveAsModel

Topics
“Implement Components in Simulink”

Introduced in R2019a

 createSimulinkBehavior

1-55

createViewArchitecture
Package: systemcomposer.arch

Create view

Syntax
view = createViewArchitecture(obj,name,Name,Value)
view = createViewArchitecture(obj,name,constraint,Name,Value)
view = createViewArchitecture(obj,name,constraint,groupBy,Name,Value)

Description
view = createViewArchitecture(obj,name,Name,Value) creates an empty view with the
given name.

view = createViewArchitecture(obj,name,constraint,Name,Value) creates a view with
the given name where the contents are populated by finding all components in the model that satisfy
the provided query.

view = createViewArchitecture(obj,name,constraint,groupBy,Name,Value) creates a
view with the given name where the contents are populated by finding all components in the model
that satisfy the provided query. The selected components are then grouped by the fully qualified
property name.

Examples

Create a View Based on a Query and Review Status
scKeylessEntrySystem;
m = systemcomposer.openModel('KeylessEntryArchitecture');

import systemcomposer.query.*;
myQuery = HasStereotype(IsStereotypeDerivedFrom('AutoProfile.SoftwareComponent'));

view = m.createViewArchitecture('Software Review Status',myQuery,...
'AutoProfile.BaseComponent.ReviewStatus','Color','red');

m.openViews;

Input Arguments
obj — Model
architecture model object

Model to use to create a view, specified as a systemcomposer.arch.Model object.

name — Name of view
character vector

Name of the view, specified as a character vector.

1 Functions

1-56

Data Types: char

constraint — Query
query constraint object

Query, specified as a systemcomposer.query.Constraint object representing specific conditions.
A constraint can contain a sub-constraint that can be joined together with another constraint using
AND or OR. A constraint can also be negated using NOT.

Query Objects and Conditions for Constraints
Query Object Condition
Property A non-evaluated value for the given property or

stereotype property.
PropertyValue An evaluated property value from a System

Composer object or a stereotype property.
HasPort A component has a port that satisfies the given

sub-constraint.
HasInterface A port has an interface that satisfies the given

sub-constraint.
HasInterfaceElement An interface has an interface element that

satisfies the given sub-constraint.
HasStereotype An architecture element has a stereotype that

satisfies the given sub-constraint.
IsInRange A property value is within the given range.
AnyComponent An element is a component and not a port or

connector.
IsStereotypeDerivedFrom A stereotype is derived from the given stereotype.

groupBy — User-defined property
enumeration

User-defined property, specified as an enumeration by which to group components.
Data Types: enum

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: createViewArchitecture(model,'Software Review
Status',myQuery,'AutoProfile.BaseComponent.ReviewStatus','Color','red','Inclu
deReferenceModels',true)

IncludeReferenceModels — Option to search for reference architectures
false (default) | true

Option to search for reference architectures, or to not include referenced architectures, specified as
the comma-separated pair consisting of 'IncludeReferenceModels' and a logical false to not
include referenced architectures and true to search for referenced architectures.

 createViewArchitecture

1-57

Example: 'IncludeReferenceModels',true
Data Types: logical

Color — Color of view
character array

Color of view, specified as the comma-separated pair consisting of 'Color' and a character array
that contains the name of the color or an RGB hexadecimal value.
Example: 'Color','blue'
Example: 'Color,'#FF00FF'
Data Types: char

Output Arguments
view — Model architecture view
view architecture object

Model architecture view created based on the specified query and properties, specified as a
systemcomposer.view.ViewArchitecture object.

See Also
find | systemcomposer.query.Constraint

Topics
“Build an Architecture Model from Command Line”
“Creating Architectural Views Programmatically”

Introduced in R2019b

1 Functions

1-58

createViewComponent
Create new view component

Syntax
viewComp = createViewComponent(object,name)

Description
viewComp = createViewComponent(object,name) creates a new view component with the
provided name.

createViewComponent is a method for the class systemcomposer.view.ViewArchitecture.

Examples

Create View Component

Create view component with context view.

scKeylessEntrySystem
zcModel = systemcomposer.loadModel('KeylessEntryArchitecture');
fobSupplierView = zcModel.createViewArchitecture("FOB Locator System Supplier Breakdown",...
 "Color","lightblue");
supplierD = fobSupplierView.createViewComponent("Supplier D");

Input Arguments
object — View architecture
view architecture object

View architecture, specified as a systemcomposer.view.ViewArchitecture object.

name — Name of component
character vector

Name of component, specified as a character vector.
Data Types: char

Output Arguments
viewComp — View component
view component object

View component, returned as a systemcomposer.view.ViewComponent object.

 createViewComponent

1-59

See Also
systemcomposer.view.BaseViewComponent | systemcomposer.view.ComponentOccurrence
| systemcomposer.view.ViewArchitecture | systemcomposer.view.ViewComponent |
systemcomposer.view.ViewElement

Introduced in R2019b

1 Functions

1-60

deleteInstance
Delete architecture instance

Syntax
deleteInstance(architectureInstance)

Description
deleteInstance(architectureInstance) deletes an existing instance.

Input Arguments
architectureInstance — Architecture instance
instance object

Architecture instance to be deleted, specified as a
systemcomposer.analysis.ArchitectureInstance object.

See Also
instantiate | loadInstance | saveInstance | systemcomposer.analysis.Instance |
updateInstance

Topics
“Write Analysis Function”

Introduced in R2019a

 deleteInstance

1-61

deleteScenario
Delete allocation scenario

Syntax
deleteScenario(name)

Description
deleteScenario(name) deletes the allocation scenario in a set with a given name.

Input Arguments
name — Name of scenario to be deleted
character vector

Name of scenario to be deleted, specified as a character vector.
Data Types: char

See Also
createScenario | getScenario

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-62

destroy
Remove and destroy model element

Syntax
destroy(element)

Description
destroy(element) removes and destroys the model element.

Examples

Destroy a Component

Create a component and then remove it from the model.

newcomponent = addComponent(rootArch,'NewComponent');
destroy(newcomponent)

Input Arguments
element — Architecture model element
architecture element object | interface element object | signal element object | property object

Architecture model element, specified as a systemcomposer.arch.Element,
systemcomposer.interface.SignalElement,
systemcomposer.interface.SignalInterface, and systemcomposer.profile.Property
object.

See Also
removeElement | removeProfile | removeProperty

Introduced in R2019a

 destroy

1-63

exportModel
Export model information as MATLAB tables

Syntax
[exportedSet] = systemcomposer.exportModel(modelName)

Description
[exportedSet] = systemcomposer.exportModel(modelName) exports model information for
components, ports, connectors, port interfaces, and requirements to be imported into MATLAB®

tables. The exported tables have prescribed formats to specify model element relationships,
stereotypes, and properties.

Examples
Export System Composer Model

To export a model, pass the model name as an argument to the exportModel function. The function
returns a structure containing five tables: components, ports, connections, portInterfaces,
and requirementLinks.

exportedSet = systemcomposer.exportModel('exMobileRobot')

exportedSet =

 struct with fields:

 components: [3×4 table]
 ports: [3×5 table]
 connections: [1×4 table]
 portInterfaces: [3×9 table]
 requirementLinks: [4×15 table]

Input Arguments
modelName — Name of model to be exported
character vector

Name of model to be exported, specified as a character vector.
Example: 'exMobileRobot'
Data Types: char

Output Arguments
exportedSet — Model tables
structure

1 Functions

1-64

Model tables, returned as a structure containing tables components, ports, connections,
portInterfaces, and requirementLinks.
Data Types: struct

See Also
systemcomposer.importModel

Topics
“Import and Export Architecture Models”

Introduced in R2019a

 exportModel

1-65

systemcomposer.extractArchitectureFromSimulink
Extract architecture from Simulink model

Syntax
systemcomposer.extractArchitectureFromSimulink(model,architectureModelName)

Description
systemcomposer.extractArchitectureFromSimulink(model,architectureModelName)
exports the Simulink model model to an architecture model architectureModelName and saves it
in the current directory.

Examples

Extract Architecture from Example Model

Extract architecture from a model with subsystem and variant architecture.

ex_modeling_variants;
systemcomposer.extractArchitectureFromSimulink('ex_modeling_variants','archModel')

Input Arguments
model — Simulink model
character vector

Simulink model from which to extract the architecture, specified as a character vector. The model
must be on the path.
Example: 'ex_modeling_variants'
Data Types: char

architectureModelName — Architecture model name
character vector

Architecture model name, specified as a character vector. This model is saved in the current
directory.
Data Types: char

See Also
inlineComponent | linkToModel | saveAsModel

Topics
“Extract Architecture from Simulink Model”

Introduced in R2019a

1 Functions

1-66

systemcomposer.allocation.editor
Open allocation editor

Syntax
systemcomposer.allocation.editor()

Description
systemcomposer.allocation.editor() opens the allocation editor.

See Also
createAllocationSet | systemcomposer.allocation.AllocationSet

Topics
“Create and Manage Allocations”

Introduced in R2020b

 systemcomposer.allocation.editor

1-67

find
Find loaded allocation set

Syntax
allocSet = systemcomposer.allocation.AllocationSet.find(name)

Description
allocSet = systemcomposer.allocation.AllocationSet.find(name) finds a loaded
allocation set in the global name space with the given name.

Input Arguments
name — Name of scenario to be found
character vector

Name of scenario to be found, specified as a character vector.
Data Types: char

Output Arguments
allocSet — Allocation set
allocation set object

Allocation set, returned as a systemcomposer.allocation.AllocationSet object.

See Also
closeAll | load | save

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-68

find
Package: systemcomposer.arch

Find architecture elements using query

Syntax
[paths] = find(object,constraint,Name,Value)
[paths, elements] = find(___)
[elements] = find(___)
[paths] = find(object,constraint,rootArch,Name,Value)

Description
[paths] = find(object,constraint,Name,Value) finds all element paths starting from the
root architecture of the model that satisfy the constraint query, with additional options specified by
one or more name-value pair arguments.

[paths, elements] = find(___) returns the component elements and their paths that
satisfy the constraint query. If rootArch is not provided, then the function finds model elements
in the root architecture of the model. The output argument paths contains a fully qualified named
path for each component in elements from the given root architecture.

[elements] = find(___) finds all component, port, or connector elements that satisfy the
constraint query, with additional options specified by one or more name-value pair arguments,
which must include 'Port' or 'Connector' for 'ElementType'.

[paths] = find(object,constraint,rootArch,Name,Value) finds all element paths starting
from the specified root architecture that satisfy the constraint query, with additional options
specified by one or more name-value pair arguments.

Examples

Find Model Element Paths that Satisfy Query

Import a model and run a query to select architecture elements that have a stereotype based on the
specified sub-constraint.
import systemcomposer.query.*;
scKeylessEntrySystem
modelObj = systemcomposer.openModel('KeylessEntryArchitecture');
find(modelObj,HasStereotype(IsStereotypeDerivedFrom('AutoProfile.BaseComponent')),...
 'Recurse',true,'IncludeReferenceModels',true)

Create a query to find components that contain the letter 'c' in their 'Name' property.
constraint = contains(systemcomposer.query.Property('Name'),'c');
find(modelObj,constraint,'Recurse',true,'IncludeReferenceModels',true)

 find

1-69

Find Elements in an Architecture Model

This example shows how to find elements in an architecture model based on a query.

Create Model

Create an architecture model with two components.

m = systemcomposer.createModel('exModel');
comps = m.Architecture.addComponent({'c1','c2'});

Create Profile and Stereotypes

Create a profile and stereotypes for your architecture model.

pf = systemcomposer.profile.Profile.createProfile('mProfile');
b = pf.addStereotype('BaseComp', 'AppliesTo','Component','Abstract', true);
s = pf.addStereotype('sComp', 'Parent',b);

Apply Profile and Stereotypes

Apply the profile and stereotypes to your architecture model.

m.Architecture.applyProfile(pf.Name)
comps(1).applyStereotype(s.FullyQualifiedName)

Find the Element

Find the element in your architecture model based on a System Composer query.

import systemcomposer.query.*;
[p, elem] = find(m, HasStereotype(IsStereotypeDerivedFrom('mProfile.BaseComp')),...
'Recurse', true, 'IncludeReferenceModels', true)

p = 1x1 cell array
 {'exModel/c1'}

elem =
 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1x1 systemcomposer.arch.Architecture]
 Name: 'c1'
 Parent: [1x1 systemcomposer.arch.Architecture]
 Ports: [0x0 systemcomposer.arch.ComponentPort]
 OwnedPorts: [0x0 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1x1 systemcomposer.arch.Architecture]
 Position: [15 15 65 65]
 Model: [1x1 systemcomposer.arch.Model]
 SimulinkHandle: 2.0004
 SimulinkModelHandle: 3.6621e-04
 UUID: '8f332ab3-1084-426c-8b02-2d5b55f90e4b'
 ExternalUID: ''

Clean Up

Uncomment to remove the model and the profile.

1 Functions

1-70

% m.close('force');
% systemcomposer.profile.Profile.closeAll;

Find Ports in Architecture Model

1 Create a model to query and create two components.
m = systemcomposer.createModel('exModel');
comps = m.Architecture.addComponent({'c1','c2'});
port = comps(1).Architecture.addPort('cport1','in');

2 Create a query to find ports that contain the letter 'c' in their 'Name' property, that returns
only the elements.
constraint = contains(systemcomposer.query.Property('Name'),'c');
find(m,constraint,'Recurse',true,'IncludeReferenceModels',true,'ElementType','Port')

Find Architecture Element Paths that Satisfy Query
import systemcomposer.query.*;
scKeylessEntrySystem
modelObj = systemcomposer.openModel('KeylessEntryArchitecture');
find(modelObj,HasStereotype(IsStereotypeDerivedFrom('AutoProfile.BaseComponent')),...
 modelObj.Architecture,'Recurse',true,'IncludeReferenceModels',true)

Input Arguments
object — Model
model object

Model, specified as a systemcomposer.arch.Model object to query using the constraint.

constraint — Query
query constraint object

Query, specified as a systemcomposer.query.Constraint object representing specific conditions.
A constraint can contain a sub-constraint that can be joined together with another constraint using
AND or OR. A constraint can also be negated using NOT.

 find

1-71

Query Objects and Conditions for Constraints

Query Object Condition
Property A non-evaluated value for the given property or

stereotype property.
PropertyValue An evaluated property value from a System

Composer object or a stereotype property.
HasPort A component has a port that satisfies the given

sub-constraint.
HasInterface A port has an interface that satisfies the given

sub-constraint.
HasInterfaceElement An interface has an interface element that

satisfies the given sub-constraint.
HasStereotype An architecture element has a stereotype that

satisfies the given sub-constraint.
IsInRange A property value is within the given range.
AnyComponent An element is a component and not a port or

connector.
IsStereotypeDerivedFrom A stereotype is derived from the given stereotype.

rootArch — Root architecture of the model
character vector

Root architecture of the model, specified as a character vector.
Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: find(model,constraint,'Recurse',true,'IncludeReferenceModels',true)

Recurse — Option to recursively search through model
true or 1 (default) | false or 0

Option to recursively search through model, or only search the specific layer, specified as the comma-
separated pair consisting of 'Recurse' and a numeric or logical 1 (true) to recursively search or 0
(false) to only search the specific layer.
Example: find(model,constraint,'Recurse',true)
Data Types: logical

IncludeReferenceModels — Option to search for reference architectures
false or 0 (default) | true or 1

Option to search for reference architectures, or to not include referenced architectures, specified as
the comma-separated pair consisting of 'IncludeReferenceModels' and a numeric or logical 0
(false) to not include referenced architectures or 1 (true) to search for referenced architectures.

1 Functions

1-72

Example: find(model,constraint,'IncludeReferenceModels',true)
Data Types: logical

ElementType — Option to search by type
'Component' (default) | 'Port' | 'Connector'

Option to search by type, specified as the comma-separated pair consisting of 'ElementType' and
'Component' to select components to satisfy the query, 'Port' to select ports to satisfy the query,
or 'Connector' to select connectors to satisfy the query.
Example: find(model,constraint,'ElementType','Port')
Data Types: char

Output Arguments
paths — Element paths
cell array of element paths

Element paths, returned as a cell array of element paths that satisfy constraint.

elements — Elements
element objects

Elements, returned as systemcomposer.arch.Element objects that satisfy constraint.

See Also
createViewArchitecture | systemcomposer.query.Constraint

Topics
“Build an Architecture Model from Command Line”

Introduced in R2019a

 find

1-73

find
Find stereotype by name

Syntax
stereotype = systemcomposer.profile.Stereotype.find(name)

Description
stereotype = systemcomposer.profile.Stereotype.find(name) finds a stereotype by
name.

Input Arguments
name — Name of stereotype
character vector

Name of stereotype, specified as a character vector as a fully-qualified name in the form
'<profile>.<stereotype>'.
Data Types: char

Output Arguments
stereotype — Stereotype found
stereotype object

Stereotype found, returned as a systemcomposer.profile.Stereotype object.

See Also
setDefaultComponentStereotype | setDefaultConnectorStereotype |
setDefaultPortStereotype | systemcomposer.profile.Stereotype

Introduced in R2019a

1 Functions

1-74

find
Find profile by name

Syntax
profile = systemcomposer.profile.Profile.find(name)

Description
profile = systemcomposer.profile.Profile.find(name) finds a profile by name.

Input Arguments
name — Name of profile
character vector

Name of profile, specified as a character vector.
Data Types: char

Output Arguments
profile — Profile found
profile object

Profile found, returned as a systemcomposer.profile.Profile object.

See Also
close | closeAll | createProfile | load | open | save | systemcomposer.profile.Profile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 find

1-75

getActiveChoice
Get active choice on variant component

Syntax
choice = getActiveChoice(variantComponent)

Description
choice = getActiveChoice(variantComponent) finds which choice is active for the variant
component.

Examples

Get Active Choice

Create a model, get the root architecture, create one variant component, add two choices for the
variant component, set the active choice, and find the active choice.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
variant = addVariantComponent(arch,'Component1');
compList = addChoice(variant,{'Choice1','Choice2'});
setActiveChoice(variant,compList(2));
comp = getActiveChoice(variant)

comp =

 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1×1 systemcomposer.arch.Architecture]
 Name: 'Choice2'
 Parent: [1×1 systemcomposer.arch.Architecture]
 Ports: [0×0 systemcomposer.arch.ComponentPort]
 OwnedPorts: [0×0 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1×1 systemcomposer.arch.Architecture]
 Position: [15 15 65 65]
 Model: [1×1 systemcomposer.arch.Model]
 SimulinkHandle: 85.0006
 SimulinkModelHandle: 78.0002
 UUID: '23b62204-f0e2-48a2-8bd6-4689f003def4'
 ExternalUID: ''

Input Arguments
variantComponent — Architecture component
variant component object

Architecture component, specified as a systemcomposer.arch.VariantComponent object with
multiple choices.

1 Functions

1-76

Output Arguments
choice — Handle of chosen variant
component object

Handle of chosen variant, returned as a systemcomposer.arch.Component object.

See Also
addChoice | getChoices | setActiveChoice

Topics
“Create Variants”

Introduced in R2019a

 getActiveChoice

1-77

getChoices
Get available choices in variant component

Syntax
compList = getChoices(variantComponent)

Description
compList = getChoices(variantComponent) returns the list of choices available for a variant
component.

Examples

Get First Choice

Create a model, get the root architecture, create a one variant component, add two choices for the
variant component, and get the first choice.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
variant = addVariantComponent(arch,'Component1');
compList = addChoice(variant,{'Choice1','Choice2'});
choices = getChoices(variant);
choices(1)

ans =

 Component with properties:

 IsAdapterComponent: 0
 Architecture: [1×1 systemcomposer.arch.Architecture]
 Name: 'Choice1'
 Parent: [1×1 systemcomposer.arch.Architecture]
 Ports: [0×0 systemcomposer.arch.ComponentPort]
 OwnedPorts: [0×0 systemcomposer.arch.ComponentPort]
 OwnedArchitecture: [1×1 systemcomposer.arch.Architecture]
 Position: [15 15 65 65]
 Model: [1×1 systemcomposer.arch.Model]
 SimulinkHandle: 99.0010
 SimulinkModelHandle: 94.0002
 UUID: '533d7f63-41e2-40fd-afe8-d081729849f0'
 ExternalUID: ''

Input Arguments
variantComponent — Architecture component
variant component object

Architecture component, specified as a systemcomposer.arch.VariantComponent object with
multiple choices.

1 Functions

1-78

Output Arguments
compList — Choices available for variant component
array of component objects

Choices available for variant component, returned as an array of
systemcomposer.arch.Component objects.

See Also
addChoice | getActiveChoice | setActiveChoice

Topics
“Create Variants”

Introduced in R2019a

 getChoices

1-79

getCondition
Return variant control on choice within variant component

Syntax
expression = getCondition(variantComponent,choice)

Description
expression = getCondition(variantComponent,choice) returns the variant control on the
choice within the variant component.

Examples

Get Condition

Create a model, get the root architecture, create on variant component, add two choices for the
variant component, set the active variant choice, set a condition, and get the condition.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
mode = 1;
variant = addVariantComponent(arch,'Component1');
compList = addChoice(variant,{'Choice1','Choice2'});
setActiveChoice(variant,compList(2));
setCondition(variant,compList(2),'mode == 2');
exp = getCondition(variant,compList(2))

exp =

 'mode == 2'

Input Arguments
variantComponent — Architecture component
variant component object

Architecture component, specified as a systemcomposer.arch.VariantComponent object. This
component contains multiple choices.

choice — Choice in variant component
component object

Choice in variant component whose control string is returned by this function, specified by a
systemcomposer.arch.Component object.

Output Arguments
expression — Control string
character vector

1 Functions

1-80

Control string that controls the selection of the particular choice, returned as a character vector.
Data Types: char

See Also
addVariantComponent | makeVariant | setActiveChoice | setCondition

Topics
“Create Variants”

Introduced in R2019a

 getCondition

1-81

getDefaultStereotype
Get default stereotype for profile

Syntax
stereotype = getDefaultStereotype(profile)

Description
stereotype = getDefaultStereotype(profile) gets the default stereotype for a profile.

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

Output Arguments
stereotype — Stereotype
stereotype object

Stereotype, returned as a systemcomposer.profile.Stereotype object.

See Also
addStereotype | createProfile | getStereotype | setDefaultStereotype

Topics
“Create a Profile and Add Stereotypes”

Introduced in R2019a

1 Functions

1-82

getDestinationElement
Gets signal elements selected on destination port for connection

Syntax
selectedElems = getDestinationElement(connector)

Description
selectedElems = getDestinationElement(connector) gets selected signal elements on
destination port for connection specified by connector.

Examples

Selected Element on Destination Port Connection

Get the selected element on destination port for a connection.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model
rootArch = get(arch,'Architecture'); % Get architecture

newComponent = addComponent(rootArch,'Component1'); % Add component
outPortComp = addPort(newComponent.Architecture,...
'testSig','out'); % Create out-port on component
outPortArch = addPort(rootArch,'testSig','out'); % Create out-port on architecture
compSrcPort = getPort(newComponent,'testSig'); % Extract component port object
archDestPort = getPort(rootArch,'testSig'); % Extract architecture port object

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
interface.addElement('x'); % Create interface element
archDestPort.setInterface(interface); % Set interface on architecture port

conns = connect(compSrcPort,archDestPort,'DestinationElement','x'); % Connect ports
elem = getDestinationElement(conns)

elem =

 1×1 cell array

 {'x'}

Input Arguments
connector — Connection between ports
connector object

Connection between ports, specified as a systemcomposer.arch.Connector object.

Output Arguments
selectedElems — Selected signal element names
character vector

 getDestinationElement

1-83

Selected signal element names, returned as a character vector.
Data Types: char

See Also
addComponent | addElement | addInterface | addPort | connect | createModel | getPort |
getSourceElement | setInterface | systemcomposer.arch.Connector

Topics
“Create an Architecture Model”

Introduced in R2020b

1 Functions

1-84

getElement
Get object for signal interface element

Syntax
element = getElement(interface,elementName)

Description
element = getElement(interface,elementName) gets the object for an element in a signal
interface.

Examples

Get Object for Named Element

Add an interface newsignal to the interface dictionary of the model, and add an element
newelement with type double. Then get the object for the element.

arch = systemcomposer.createModel('newmodel',0);
interface = addInterface(arch.InterfaceDictionary,'newsignal');
addElement(interface,'newelement','Type','double');
element = getElement(interface,'newelement')

element =
 SignalElement with properties:

 Interface: [1×1 systemcomposer.interface.SignalInterface]
 Name: 'newelement'
 Type: 'double'
 Dimensions: '1'
 Units: ''
 Complexity: 'real'
 Minimum: '[]'
 Maximum: '[]'
 Description: ''
 UUID: 'f42c8166-e4ad-4488-926a-293050016e1a'
 ExternalUID: ''

Input Arguments
interface — Interface object
signal interface object

Interface object containing elements to be identified, specified as a
systemcomposer.interface.SignalInterface object.

elementName — Name of element to be identified
character vector

 getElement

1-85

Name of element to be identified, specified as a character vector.
Data Types: char

Output Arguments
element — New signal element object
signal element object

New signal element object in an interface, returned as a
systemcomposer.interface.SignalElement object.

See Also
addElement | getInterface | removeElement

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-86

getEvaluatedPropertyValue
Get evaluated value of property from component

Syntax
[value] = getEvaluatedPropertyValue(compObj,qualifiedPropName)

Description
[value] = getEvaluatedPropertyValue(compObj,qualifiedPropName) obtains the
evaluated value of a property specified on the component.

Input Arguments
compObj — Component to get property value from
component object

Component to get property value from, specified as a systemcomposer.arch.Component or
systemcomposer.arch.VariantComponent object.

qualifiedPropName — Qualified property name
character vector

Qualified property name, specified as a character vector in the form
'<profile>.<stereotype>.<property>'.
Data Types: char

Output Arguments
value — Property value
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

Property value, returned as a data type that depends on how the property is defined in the profile.

See Also
getValue | setValue

Topics
“Write Analysis Function”

Introduced in R2019a

 getEvaluatedPropertyValue

1-87

getInterface
Get object for named interface in interface dictionary

Syntax
interface = getInterface(dictionary,name)

Description
interface = getInterface(dictionary,name) gets the object for a named interface in the
interface dictionary.

Examples

Add Interface

Add an interface 'newInterface' to the interface dictionary of the model. Obtain the interface
object.

addInterface(arch.InterfaceDictionary,'newInterface')
interface = getInterface(arch.InterfaceDictionary,'newInterface')

interface =
 SignalInterface with properties:
 Dictionary: [1×1 systemcomposer.interface.Dictionary]
 Name: 'newInterface'
 Elements: [0×0 systemcomposer.interface.SignalElement]
 UUID: '438b5004-6cab-40eb-955b-37e0df5a914f'
 ExternalUID: ''

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary, specified as a systemcomposer.interface.Dictionary object. This is the data
dictionary attached to the model. It could be the local dictionary of the model or an external data
dictionary.

name — Name of interface
character vector

Name of interface, specified as a character vector.
Data Types: char

1 Functions

1-88

Output Arguments
interface — Object for named interface
signal interface object

Object for named interface, returned as a systemcomposer.interface.SignalInterface object.

See Also
addElement | addInterface | removeElement

Topics
“Define Interfaces”

Introduced in R2019a

 getInterface

1-89

getInterfaceNames
Get names of all interfaces in interface dictionary

Syntax
interfaceNames = getInterfaceNames(dictionary)

Description
interfaceNames = getInterfaceNames(dictionary) gets the names of all interfaces in the
interface dictionary.

Examples

Get Interface Names

interfaceNames = getInterfaceNames(arch.InterfaceDictionary)

Input Arguments
dictionary — Data dictionary
dictionary object

Data dictionary attached to the model, specified as a systemcomposer.interface.Dictionary
object for the local dictionary of the model or an external data dictionary.

Output Arguments
interfaceNames — Interface names
array of character vectors

Interface names, specified as an array of character vectors.
Data Types: char

See Also
addInterface | getInterface | removeInterface

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-90

getPort
Get port from component

Syntax
port = getPort(compObj,portName)

Description
port = getPort(compObj,portName) gets the port on this component with a specified name.

Input Arguments
compObj — Component to get port from
component object

Component from which to get the port, specified as a systemcomposer.arch.Component or
systemcomposer.arch.VariantComponent object.

portName — Name of port to find
character vector

Name of port to find, specified as a string or character vector.
Data Types: char

Output Arguments
port — Port of this component
component port

Port of the component, returned as a systemcomposer.arch.ComponentPort object.

See Also
addElement | getElement | getInterface | removeElement

Introduced in R2019a

 getPort

1-91

getProperty
Get property value corresponding to stereotype applied to element

Syntax
[propertyValue,propertyUnits] = getProperty(element,propertyName)

Description
[propertyValue,propertyUnits] = getProperty(element,propertyName) obtains the
value and units of the property specified in the propertyName argument. Get the property
corresponding to an applied stereotype by qualified name '<stereotype>.<property> '.

Examples

Get Property from Component

Get the weight property from a component with sysComponent stereotype applied.

>> [val, units] = getProperty(element,'sysComponent.weight')
val =
 '0'
units =
 'kg'

Input Arguments
element — Architecture model element
component object | port object | connector object

Architecture model element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.Element object.

propertyName — Name of property
character vector

Name of property, specified as a character vector as a fully qualified name in the form
'<stereotype>.<property>'.
Data Types: char

Output Arguments
propertyValue — Value of property
character vector | numeric | enumeration

Value of property, returned as a character vector, numeric, or enumeration value.

1 Functions

1-92

Data Types: char | double | enum

propertyUnits — Units of property
character vector

Units of property to interpret property values, returned as a character vector.
Data Types: char

See Also
removeProperty | setProperty

Topics
“Set Tags and Properties for Analysis”

Introduced in R2019a

 getProperty

1-93

getScenario
Get allocation scenario

Syntax
scenario = getScenario(name)

Description
scenario = getScenario(name) gets the allocation scenario in this set with the given name, if
one exists.

Input Arguments
name — Name of scenario
character vector

Name of scenario, specified as a character vector.
Data Types: char

Output Arguments
scenario — Allocation scenario
allocation scenario object

Allocation scenario, returned as a systemcomposer.allocation.AllocationScenario object.

See Also
createScenario | deleteScenario

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-94

getSourceElement
Gets signal elements selected on source port for connection

Syntax
selectedElems = getSourceElement(connector)

Description
selectedElems = getSourceElement(connector) gets selected signal elements on source port
for connection specified by connector.

Examples

Selected Element on Source Port Connection

Get the selected element on source port for a connection.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model
rootArch = get(arch,'Architecture'); % Get architecture

newComponent = addComponent(rootArch,'Component1'); % Add component
inPortComp = addPort(newComponent.Architecture,...
'testSig','in'); % Create in-port on component
inPortArch = addPort(rootArch,'testSig','in'); % Create in-port on architecture
compDestPort = getPort(newComponent,'testSig'); % Extract component port object
archSrcPort = getPort(rootArch,'testSig'); % Extract architecture port object

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
interface.addElement('x'); % Create interface element
archSrcPort.setInterface(interface); % Set interface on architecture port

conns = connect(archSrcPort,compDestPort,'SourceElement','x'); % Connect ports
elem = getSourceElement(conns)

elem =

 1×1 cell array

 {'x'}

Input Arguments
connector — Connection between ports
connector object

Connection between ports, specified as a systemcomposer.arch.Connector object.

Output Arguments
selectedElems — Selected signal element names
character vector

 getSourceElement

1-95

Selected signal element names, returned as a character vector.
Data Types: char

See Also
addComponent | addElement | addInterface | addPort | connect | createModel |
getDestinationElement | getPort | setInterface | systemcomposer.arch.Connector

Topics
“Create an Architecture Model”

Introduced in R2020b

1 Functions

1-96

getStereotype
Find stereotype in profile by name

Syntax
stereotype = getStereotype(profile,name)

Description
stereotype = getStereotype(profile,name) finds a stereotype in a profile by name.

Input Arguments
profile — Profile with stereotype
profile object

Profile with stereotype, specified as a systemcomposer.profile.Profile object.

name — Name of stereotype
character vector

Name of stereotype, specified as a character vector.
Data Types: char

Output Arguments
stereotype — Found stereotype
stereotype object

Found stereotype, returned as a systemcomposer.profile.Stereotype object.

See Also
addStereotype | systemcomposer.profile.Profile

Topics
“Create a Profile and Add Stereotypes”

Introduced in R2019a

 getStereotype

1-97

getStereotypes
Get stereotypes applied on element of architecture model

Syntax
stereotypes = getStereotypes(element)

Description
stereotypes = getStereotypes(element) gets an array of fully qualified stereotype names
that have been applied on the element.

Examples

Get Stereotypes

stereotypes = getStereotypes(component_handle)

Input Arguments
element — Model element
architecture object | component object | port object | connector object

Model element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, or systemcomposer.arch.Connector object.

Output Arguments
stereotypes — Fully qualified name list of stereotypes
cell array of character vectors

Fully qualified name list of stereotypes, specified as a cell array of character vectors in the form
'<profile>.<stereotype>'.
Data Types: char

See Also
applyStereotype | batchApplyStereotype | removeStereotype

Topics
“Use Stereotypes and Profiles”

Introduced in R2019a

1 Functions

1-98

getValue
Get value of property from element instance

Syntax
[value,unit] = getValue(instance,property)

Description
[value,unit] = getValue(instance,property) obtains the property of the instance and
assigns it to value. This function is part of the instance API that you can use to analyze the model
iteratively, element by element.instance refers to the element instance on which the iteration is
being performed.

Examples

Get Weight Property

Assume that a MechComponent stereotype is attached to the specification of the instance.

weightValue = getValue(instance,'MechComponent.weight');

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified by a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object. This function is part of the instance API
that you can use to analyze the model iteratively, element by element.instance refers to the element
instance on which the iteration is being performed.

property — Property
character vector

Property, specified as a character vector in the form '<stereotype>.<property>'.
Data Types: char

Output Arguments
value — Property value
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

Property value, returned as a data type that depends on how the property is defined in the profile.

 getValue

1-99

unit — Property unit
character vector

Property unit, returned as a character vector that describes the unit of the property as defined in the
profile.

See Also
setValue | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-100

HasInterface
Package: systemcomposer.query

Create query to select architecture elements with interface on port based on specified sub-constraint

Syntax
query = HasInterface(sub-constraint)

Description
query = HasInterface(sub-constraint) creates a query object that the find method and the
createViewArchitecture method use to select architecture elements with an interface that
satisfies the given sub-constraint.

Examples

Construct Query to Select All Port Interfaces

Select all of the port interfaces in an architecture model with matching criteria.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*;

Open the Simulink project file.

scKeylessEntrySystem

Open the model.
m = systemcomposer.openModel('KeylessEntryArchitecture');

Create a query for all the interfaces in a port with 'KeyFOBPosition' in the 'Name' and run the
query.
constraint = HasPort(HasInterface(contains(Property('Name'),'KeyFOBPosition')));
portInterfaces = find(m,constraint,'Recurse',true,'IncludeReferenceModels',true)

portInterfaces =

 10×1 cell array

 {'KeylessEntryArchitecture/Door Lock//Unlock System' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller' }
 {'KeylessEntryArchitecture/Engine Control System' }
 {'KeylessEntryArchitecture/Engine Control System/Keyless Start Controller'}
 {'KeylessEntryArchitecture/FOB Locator System' }
 {'KeylessEntryArchitecture/FOB Locator System/FOB Locator Module' }
 {'KeylessEntryArchitecture/Lighting System' }
 {'KeylessEntryArchitecture/Lighting System/Lighting Controller' }

 HasInterface

1-101

 {'KeylessEntryArchitecture/Sound System' }
 {'KeylessEntryArchitecture/Sound System/Sound Controller' }

Input Arguments
sub-constraint — Condition restricting the query
query constraint object

Condition restricting the query, specified as a systemcomposer.query.Constraint object.
Example: contains(Property('Name'),'KeyFOBPosition')

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

See Also
HasInterfaceElement | HasPort | createViewArchitecture | find |
systemcomposer.query.Constraint

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

1 Functions

1-102

HasInterfaceElement
Package: systemcomposer.query

Create query to select architecture elements with interface element on interface based on specified
sub-constraint

Syntax
query = HasInterfaceElement(sub-constraint)

Description
query = HasInterfaceElement(sub-constraint) creates a query object that the find
method and the createViewArchitecture method use to select architecture elements with an
interface element that satisfies the given sub-constraint.

Examples

Construct Query to Select All Interface Elements

Select all of the port interface elements in an architecture model with matching criteria.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*;

Open the Simulink project file.

scExampleSmallUAV

Open the model.
m = systemcomposer.openModel('scExampleSmallUAVModel');

Create a query for all the interface elements with 'c' in the 'Name' and run the query.
constraint = HasPort(HasInterface(HasInterfaceElement(contains(Property('Name'),'c'))));
elements = find(m,constraint,'Recurse',true,'IncludeReferenceModels',true)

elements =

 4×1 cell array

 {'scExampleSmallUAVModel/FlightComputer' }
 {'scExampleSmallUAVModel/FlightComputer/Main Board'}
 {'scExampleSmallUAVModel/Payload' }
 {'scExampleSmallUAVModel/Payload/Payload' }

Input Arguments
sub-constraint — Condition restricting the query
query constraint object

 HasInterfaceElement

1-103

Condition restricting the query, specified as a systemcomposer.query.Constraint object.
Example: contains(Property('Name'),'c')

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

See Also
HasInterface | HasPort | createViewArchitecture | find |
systemcomposer.query.Constraint

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

1 Functions

1-104

HasPort
Package: systemcomposer.query

Create query to select architecture elements with port on component based on specified sub-
constraint

Syntax
query = HasPort(sub-constraint)

Description
query = HasPort(sub-constraint) creates a query object that the find method and the
createViewArchitecture method use to select architecture elements with a port that satisfies the
given sub-constraint.

Examples

Construct Query to Select All Sensor Component Ports

Select all of the sensor component ports in an architecture model.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*;

Open the Simulink project file.

scKeylessEntrySystem

Open the model.
m = systemcomposer.openModel('KeylessEntryArchitecture');

Create a query for all the ports in a component with 'Sensor' in the 'Name' and run the query.
constraint = HasPort(contains(Property('Name'),'Sensor'));
sensorComp = find(m,constraint,'Recurse',true,'IncludeReferenceModels',true)

sensorComp =

 1×1 cell array

 {'KeylessEntryArchitecture/Door Lock//Unlock System/Door Lock Controller'}

Input Arguments
sub-constraint — Condition restricting the query
query constraint object

Condition restricting the query, specified as a systemcomposer.query.Constraint object.

 HasPort

1-105

Example: contains(Property('Name'),'Sensor')

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

See Also
HasInterface | HasInterfaceElement | createViewArchitecture | find |
systemcomposer.query.Constraint

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

1 Functions

1-106

HasStereotype
Package: systemcomposer.query

Create query to select architecture elements with stereotype based on specified sub-constraint

Syntax
query = HasStereotype(sub-constraint)

Description
query = HasStereotype(sub-constraint) creates a query object that the find method and
the createViewArchitecture method use to select architecture elements with a stereotype that
satisfies the given sub-constraint.

Examples

Construct Query to Select All Hardware Components

Select all of the hardware components in an architecture model.

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*;

Open the Simulink project file.

scKeylessEntrySystem

Open the model.
m = systemcomposer.openModel('KeylessEntryArchitecture');

Create a query for all the hardware components and run the query, displaying one of them.
constraint = HasStereotype(IsStereotypeDerivedFrom('AutoProfile.HardwareComponent'));
hwComp = find(m,constraint,'Recurse',true,'IncludeReferenceModels',true);
hwComp(16)

ans =

 1×1 cell array

 {'KeylessEntryArchitecture/FOB Locator System/Center Receiver/PWM'}

Input Arguments
sub-constraint — Condition restricting the query
query constraint object

Condition restricting the query, specified as a systemcomposer.query.Constraint object.

 HasStereotype

1-107

Example: IsStereotypeDerivedFrom('AutoProfile.HardwareComponent')

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

See Also
IsStereotypeDerivedFrom | createViewArchitecture | find |
systemcomposer.query.Constraint

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

1 Functions

1-108

importModel
Import model information from MATLAB tables

Syntax
archModel = systemcomposer.importModel(modelName,components,ports,
connections,portInterfaces,requirementLinks)
archModel = systemcomposer.importModel(importStruct)
[archModel,idMappingTable,importLog,errorLog] = systemcomposer.importModel(
___)

Description
archModel = systemcomposer.importModel(modelName,components,ports,
connections,portInterfaces,requirementLinks) creates a new architecture model based on
MATLAB tables that specify components, ports, connections, port interfaces, and requirements.

archModel = systemcomposer.importModel(importStruct) creates a new architecture
model based on a structure of MATLAB tables that specify components, ports, connections, port
interfaces, and requirements.

[archModel,idMappingTable,importLog,errorLog] = systemcomposer.importModel(
___) creates a new architecture model with output arguments idMappingTable with table
information, importLog to display import information, and errorLog to display import error
information.

Input Arguments
modelName — Name of model to be created
character vector

Name of model to be created, specified as a character vector.
Example: 'importedModel'
Data Types: char

components — Model component information
MATLAB table

Model component information, specified as a MATLAB table. The component table must include
name, unique ID, parent component ID, and component type for each component. It can also include
other relevant information such as referenced model, stereotype qualifier name, and so on, required
to construct the architecture hierarchy.
Data Types: table

ports — Model port information
MATLAB table

 importModel

1-109

Model port information, specified as a MATLAB table. The ports table must include port name,
direction, port ID, and component ID information. portInterfaces information may also be
required to assign ports to components.
Data Types: table

connections — Model connections information
MATLAB table

Model connections information, specified as a MATLAB table. The requirement links table must
include label, source ID, destination type, and destination ID information.
Data Types: table

portInterfaces — Model port interfaces information
MATLAB table

Model port interfaces information, specified as a MATLAB table. The port interfaces table must
include name, ID, parent ID, data type, dimensions, units, complexity, minimum, and maximum
information.
Data Types: table

requirementLinks — Model requirement links information
MATLAB table

Model requirement links information, specified as a MATLAB table. The requirement links table must
include label, source ID, destination type, destination ID, and type information.
Data Types: table

importStruct — Model tables
structure

Model tables, specified as a structure containing tables components, ports, connections,
portInterfaces, and requirementLinks.
Data Types: struct

Output Arguments
archModel — Handle to architecture model
architecture object

Handle to architecture model, specified as a systemcomposer.arch.Architecture object.

idMappingTable — Mapping of custom IDs and internal UUIDs of elements
structure

Mapping of custom IDs and internal UUIDs of elements, returned as a struct of MATLAB tables.
Data Types: struct

importLog — Confirmation that elements were imported
cell array of character vectors

Confirmation that elements were imported, returned as a cell array of character vectors.

1 Functions

1-110

Data Types: char

errorLog — Errors reported during import process
array of message objects

Errors reported during import process, returned as an array of message MException objects. You
can obtain the error text by calling the getString method on each MException object.

Examples

Import and Export Architectures

This example shows how to import and export architectures. In System Composer, an architecture is
fully defined by three sets of information:

• Component information
• Port information
• Connection information

You can import an architecture into System Composer when this information is defined in, or
converted into, MATLAB tables.

In this example, the architecture information of a simple UAV system is defined in an Excel
spreadsheet and is used to create a System Composer architecture model. It also links elements to
the specified system level requirement. You can modify the files in this example to import
architectures defined in external tools, when the data includes the required information. The example
also shows how to export this architecture information from System Composer architecture model to
an Excel spreadsheet.

Architecture Definition Data

You can characterize the architecture as a network of components and import by defining
components, ports, connections, interfaces and requirement links in MATLAB tables. The component
table must include name, unique ID, and parent component ID for each component. It can also
include other relevant information required to construct the architecture hierarchy for referenced
model, and stereotype qualifier names. The port table must include port name, direction, component,
and port ID information. Port interface information may also be required to assign ports to
components. The connection table includes information to connect ports. At a minimum, this table
must include the connection ID, source port ID, and destination port ID.

The systemcomposer.importModel(importModelName) API :

• Reads stereotype names from Component table and load the profiles

• Creates components and attaches ports

• Creates connections using the connection map

• Sets interfaces on ports

• Links elements to specified requirements

• Saves referenced models

 importModel

1-111

• Saves the architecture model

Make sure the current directory is writable because this example will create files.

[stat, fa] = fileattrib(pwd);
if ~fa.UserWrite
 disp('This script must be run in a writable directory');
 return;
end
% Instantiate adapter class to read from Excel.
modelName = 'simpleUAVArchitecture';
% importModelFromExcel function reads the Excel file and creates the MATLAB
% tables.
importAdapter = ImportModelFromExcel('SmallUAVModel.xls','Components','Ports','Connections','PortInterfaces','RequirementLinks');
importAdapter.readTableFromExcel();

Import an Architecture

model = systemcomposer.importModel(modelName,importAdapter.Components,importAdapter.Ports,importAdapter.Connections,importAdapter.Interfaces,importAdapter.RequirementLinks);
% Auto-arrange blocks in the generated model
Simulink.BlockDiagram.arrangeSystem(modelName);

Export an Architecture

You can export an architecture to MATLAB tables and then convert to an external file

exportedSet = systemcomposer.exportModel(modelName);
% The output of the function is a structure that contains the component table, port table,
% connection table, the interface table, and the requirement links table.
% Save the above structure to excel file.
SaveToExcel('ExportedUAVModel',exportedSet);

1 Functions

1-112

Close Model

bdclose(modelName);

See Also
systemcomposer.exportModel

Topics
“Import and Export Architecture Models”

Introduced in R2019a

 importModel

1-113

inlineComponent
Inline reference architecture into model

Syntax
componentObj = inlineComponent(component,inlineFlag)

Description
componentObj = inlineComponent(component,inlineFlag) makes contents of the
architecture model inline, referenced by the specified component and breaks the link to the
reference model. If inlineFlag is false, then the contents are removed and only interfaces
remain.

Examples

Reuse Component

Save the component robotcomp in the architecture model Robot.slx and reference it from another
component, robotArm so that robotArm uses the architecture of robotcomp. Inline robotcomp so
that its architecture can be edited independently.

saveAsModel(robotcomp,'Robot');
linkToModel(robotArm,'Robot');
inlineComponent(robotArm,true);

Input Arguments
component — Architecture component
component object

Architecture component linked to an architecture model, specified as a
systemcomposer.arch.Component object.

inlineFlag — Control contents of inlined component
true or 1 | false or 0

Control contents of inlined component, specified as 1 (true) if contents of the referenced
architecture model are copied to the component architecture, and 0 (false) if the contents are not
copied and only ports and interfaces are inlined. If the component is a Simulink behavior,
inlineFlag is ignored and set to false.
Data Types: logical

Output Arguments
componentObj — Architecture component
component object

1 Functions

1-114

Architecture component, returned as a systemcomposer.arch.Component object.

See Also
linkToModel | saveAsModel

Topics
“Decompose and Reuse Components”

Introduced in R2019a

 inlineComponent

1-115

instantiate
Create analysis instance from specification

Syntax
instance = instantiate(model,properties,name)
instance = instantiate(model,profile,name)

Description
instance = instantiate(model,properties,name) creates an instance of a model for
analysis.

instance = instantiate(model,profile,name) creates an instance of a model for analysis
with all stereotypes in a profile.

Examples

Instantiate All Properties of a Stereotype

Instantiate all properties of a stereotype that will be applied to specific elements during instantiation.

Create a profile for latency characteristics.
profile = systemcomposer.profile.Profile.createProfile('LatencyProfile');

latencybase = profile.addStereotype('LatencyBase');
latencybase.addProperty('latency','Type','double');
latencybase.addProperty('dataRate','Type','double','DefaultValue','10');

connLatency = profile.addStereotype('ConnectorLatency','Parent',...
'LatencyProfile.LatencyBase');
connLatency.addProperty('secure','Type','boolean');
connLatency.addProperty('linkDistance','Type','double');

nodeLatency = profile.addStereotype('NodeLatency','Parent',...
'LatencyProfile.LatencyBase');
nodeLatency.addProperty('resources','Type','double','DefaultValue','1');

portLatency = profile.addStereotype('PortLatency','Parent',...
'LatencyProfile.LatencyBase');
portLatency.addProperty('queueDepth','Type','double');
portLatency.addProperty('dummy','Type','int32');

profile.save;

Instantiate all properties of a stereotype.
model = systemcomposer.createModel('archModel');
NodeLatency = struct('elementKinds',['Component']);
ConnectorLatency = struct('elementKinds',['Connector']);
LatencyBase = struct('elementKinds',['Connector','Port','Component']);
PortLatency = struct('elementKinds',['Port']);

LatencyAnalysis = struct('NodeLatency',NodeLatency, ...
 'ConnectorLatency',ConnectorLatency, ...
 'PortLatency',PortLatency, ...

1 Functions

1-116

 'LatencyBase',LatencyBase);

properties = struct('LatencyProfile',LatencyAnalysis);
instantiate(model.Architecture,properties,'NewInstance')

Instantiate Specific Properties of a Stereotype

Instantiate specific properties of a stereotype that will be applied to specific elements during
instantiation.

NodeLatency = struct('elementKinds',["Component"], ...
 'properties',struct('resources',true));
ConnectorLatency = struct('elementKinds',["Connector"], ...
 'properties',struct('secure',true,'linkDistance',true));
LatencyBase = struct('elementKinds',[], ...
 'properties',struct('dataRate',true,'latency',false));
PortLatency = struct('elementKinds',["Port"], ...
 'properties',struct('queueDepth',true));

LatencyAnalysis = struct('NodeLatency',NodeLatency, ...
 'ConnectorLatency',ConnectorLatency, ...
 'PortLatency',PortLatency, ...
 'LatencyBase',LatencyBase);

properties = struct('LatencyProfile',LatencyAnalysis);
instantiate(model.Architecture,properties,'NewInstance')

Instantiate All Stereotypes in a Profile

Instantiate all stereotypes already in a profile that will be applied to elements during instantiation.

instantiate(model.Architecture,'LatencyProfile','NewInstance')

Input Arguments
model — Model architecture
architecture object

Model architecture from which instance is generated, specified as a
systemcomposer.arch.Architecture object.
Example: model.Architecture

properties — Stereotype properties
struct

Structure containing profile, stereotype, and property information through which the user can specify
which stereotypes and properties need to be instantiated.

name — Name of instance
character vector

Name of instance generated from the model, specified as a character vector.

 instantiate

1-117

Example: 'NewInstance'
Data Types: char

profile — Profile name
character vector

Profile name, specified as a character vector.
Example: 'LatencyProfile'
Data Types: char

Output Arguments
instance — Element instance
instance object

Element instance, returned as a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object. This function is part of the instance API
that you can use to analyze the model iteratively, element by element. The value refers to the element
instance on which the iteration is being performed.

See Also
deleteInstance | loadInstance | saveInstance | systemcomposer.analysis.Instance

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-118

isArchitecture
Find if instance is architecture instance

Syntax
flag = isArchitecture(instance)

Description
flag = isArchitecture(instance) finds whether the instance is an architecture instance.

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified by a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object. This function is part of the instance API
that you can use to analyze the model iteratively, element by element.instance refers to the element
instance on which the iteration is being performed.

Output Arguments
flag — Whether instance is architecture
true | false

This argument is true if the instance is an architecture.
Data Types: logical

See Also
isComponent | isConnector | isPort

Topics
“Write Analysis Function”

Introduced in R2019a

 isArchitecture

1-119

isComponent
Find if instance is component instance

Syntax
flag = isComponent(instance)

Description
flag = isComponent(instance) finds whether the instance is a component instance.

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified by a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object. This function is part of the instance API
that you can use to analyze the model iteratively, element by element.instance refers to the element
instance on which the iteration is being performed.

Output Arguments
flag — Whether instance is component
true | false

This argument is true if the instance is a component.
Data Types: logical

See Also
isArchitecture | isConnector | isPort

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-120

isConnector
Find if instance is connector instance

Syntax
flag = isConnector(instance)

Description
flag = isConnector(instance) finds whether the instance is a connector instance.

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified by a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object. This function is part of the instance API
that you can use to analyze the model iteratively, element by element.instance refers to the element
instance on which the iteration is being performed.

Output Arguments
flag — Whether instance is connector
true | false

This argument is true if the instance is a connector.
Data Types: logical

See Also
isArchitecture | isComponent | isPort

Topics
“Write Analysis Function”

Introduced in R2019a

 isConnector

1-121

IsInRange
Package: systemcomposer.query

Create query to select a range of property values

Syntax
query = IsInRange(propertyName,beginRangeValue,endRangeValue)

Description
query = IsInRange(propertyName,beginRangeValue,endRangeValue) creates a query
object that the find method and the createViewArchitecture method use to select a range of
values from a specified propertyName.

Examples

Find Model Elements that Satisfy Property Range

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*;

Open the Simulink project file.

scKeylessEntrySystem

Open the model.
m = systemcomposer.openModel('KeylessEntryArchitecture');

Create a query to find values from 10ms to 40ms in the 'Latency' property.
constraint = IsInRange(PropertyValue('AutoProfile.BaseComponent.Latency'),...
Value(10,'ms'),Value(40,'ms'));
latency = find(m,constraint,'Recurse',true,'IncludeReferenceModels',true)

latency =

 5×1 cell array

 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Actuator'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/Sound System/Dashboard Speaker'

Input Arguments
propertyName — Property name
character vector

Property name for model element, specified as a character vector as fully qualified name '<profile
name>.<stereotype name>.<property name>' or any property on the designated class.

1 Functions

1-122

Example: 'Name'
Example: 'AutoProfile.BaseComponent.Latency'
Data Types: char

beginRangeValue — Beginning range value
value object

Beginning range value for propertyName, specified as a systemcomposer.query.Value object.
Example: Value(20)
Example: Value(5,'ms')

endRangeValue — Ending range value
value object

Ending range value for propertyName, specified as a systemcomposer.query.Value object.
Example: Value(100)
Example: Value(20,'ms')

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

See Also
createViewArchitecture | find | systemcomposer.query.Constraint

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

 IsInRange

1-123

isPort
Find if instance is port instance

Syntax
flag = isPort(instance)

Description
flag = isPort(instance) finds whether the instance is a port instance.

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified by a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object. This function is part of the instance API
that you can use to analyze the model iteratively, element by element.instance refers to the element
instance on which the iteration is being performed.

flag — Whether instance is port
true | false

This argument is true if the instance is a port.
Data Types: logical

See Also
isArchitecture | isComponent | isConnector

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-124

isReference
Find if component is reference to another model

Syntax
flag = isReference(compObj)

Description
flag = isReference(compObj) returns whether or not the component is a reference to another
model.

Input Arguments
compObj — Component to get port from
base component object | architecture instance | component instance | port instance | connector
instance

Component to get port from, specified as a systemcomposer.arch.BaseComponent,
systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstanceobject.

Output Arguments
flag — Whether component is reference
true | false

This argument is true if the component is a reference.
Data Types: logical

See Also
Topics
“Write Analysis Function”

Introduced in R2019a

 isReference

1-125

IsStereotypeDerivedFrom
Package: systemcomposer.query

Create query to select stereotype derived from a fully qualified name

Syntax
query = IsStereotypeDerivedFrom(name)

Description
query = IsStereotypeDerivedFrom(name) creates a query object that the find method and
the createViewArchitecture method use to select a stereotype from the fully qualified name.

Input Arguments
name — Fully qualified stereotype name
character vector

Fully qualified stereotype name, specified as a character vector as '<profile
name>.<stereotype name>'.
Example: 'AutoProfile.BaseComponent'
Data Types: char

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

See Also
HasStereotype | createViewArchitecture | find | systemcomposer.query.Constraint

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

1 Functions

1-126

iterate
Iterate over model elements

Syntax
iterate(architecture,iterType,iterFunction)
iterate(___ ,Name,Value)
iterate(___ ,additionalArgs)

Description
iterate(architecture,iterType,iterFunction) iterates over components in the architecture
in the order specified by iterType and invokes the function specified by the function handle
iterFunction on each component.

iterate(___ ,Name,Value) iterates over components in the architecture, with additional options
specified by one or more name-value pair arguments.

iterate(___ ,additionalArgs) passes all trailing arguments as arguments to iterFunction.

Examples

Battery Capacity Computation

Open the example “Battery Sizing and Automotive Electrical System Analysis”.

archModel = systemcomposer.openModel('scExampleAutomotiveElectricalSystemAnalysis');
% Instantiate battery sizing class used by analysis function to store
% analysis results.
objcomputeBatterySizing = computeBatterySizing;
% Run the analysis using the iterator
iterate(archModel,'Topdown',@computeLoad,objcomputeBatterySizing);

Input Arguments
architecture — Architecture to iterate over
architecture object

Architecture to iterate over, specified as an systemcomposer.arch.Architecture object.

iterType — Iteration type
'PreOrder' | 'PostOrder' | 'TopDown' | 'BottomUp'

Iteration type, specified as 'PreOrder', 'PostOrder', 'TopDown', or 'BottomUp'.
Data Types: char

iterFunction — Iteration function
function handle

Iteration function, specified as a function handle to be iterated on each component.

 iterate

1-127

Data Types: string

additionalArgs — Additional function arguments
function arguments

Additional function arguments, specified as a comma-separated list of arguments to be passed to
iterFunction.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: iterate(archModel,'Topdown',@computeLoad,objcomputeBatterySizing)

Recurse — Option to recursively iterate through model components
true or 1 (default) | false or 0

Option to recursively iterate through model components, specified as the comma-separated pair
consisting of 'Recurse' and a numeric or logical 1 (true) to recursively iterate or 0 (false) to
iterate over components only in this architecture and not navigate into the architectures of child
components.
Data Types: logical

IncludePorts — Option to iterate over components and architecture ports
false or 0 (default) | true or 1

Option to iterate over components and architecture ports, specified as the comma-separated pair
consisting of 'IncludePorts' and a numeric or logical 0 (false) to only iterate over components
or 1 (true) to iterate over components and architecture ports.
Data Types: logical

FollowConnectivity — Option to ensure components are visited according to how they are
connected from source to destination
false or 0 (default) | true or 1

Option to ensure components are visited according to how they are connected from source to
destination, specified as the comma-separated pair consisting of 'FollowConnectivity' and a
numeric or logical 0 (false) or 1 (true). If this option is specified as 1 (true), iteration type has to
be either 'TopDown' or 'BottomUp'. If any other option is specified, iteration defaults to
'TopDown'.
Data Types: logical

See Also
instantiate | systemcomposer.analysis.Instance

Topics
“Analyze Architecture”

Introduced in R2019a

1 Functions

1-128

linkDictionary
Package: systemcomposer.arch

Link data dictionary to architecture model

Syntax
linkDictionary(obj,dictionaryFile)

Description
linkDictionary(obj,dictionaryFile) associates the specified Simulink data dictionary with
the model.

Input Arguments
obj — Architecture model object
model object

Architecture model object from which the dictionary link is to be added, specified as a
systemcomposer.arch.Model object.

dictionaryFile — Dictionary file name
character vector

Dictionary file name with the .sldd extension, specified as a character vector.
Data Types: char

See Also
systemcomposer.createDictionary | systemcomposer.openDictionary |
unlinkDictionary

Topics
“Save, Link, and Delete Interfaces”

Introduced in R2019a

 linkDictionary

1-129

linkToModel
Link component to a model

Syntax
modelHandle = linktoModel(component,modelName)
modelHandle = linktoModel(component,modelFilePath)

Description
modelHandle = linktoModel(component,modelName) links from the component to a model.

modelHandle = linktoModel(component,modelFilePath) links from the component to a
model.

Examples

Reuse Component

Save the component robotComp in the architecture model Robot.slx and reference it from another
component, robotArm so that robotArm uses the architecture of robotComp.

saveAsModel(robotComp,'Robot');
linkToModel(robotArm,'Robot');

Input Arguments
component — Architecture component
component object

Architecture component with no children, specified as a systemcomposer.arch.Component object.

modelName — Model name
character vector

Model name for an existing model that defines the architecture or behavior of the component,
specified as a character vector. Models of the same name prioritize protected models.
Example: 'Robot'
Data Types: char

modelFilePath — Model file path
character vector

Model file path for an existing model that defines the architecture or behavior of the component,
specified as a character vector.
Example: 'Model.slx'
Example: 'ProtectedModel.slxp'

1 Functions

1-130

Data Types: char

Output Arguments
modelHandle — Handle to the linked model
numeric value

Handle to the linked model, returned as a numeric value.
Data Types: double

See Also
inlineComponent | saveAsModel

Topics
“Decompose and Reuse Components”

Introduced in R2019a

 linkToModel

1-131

load
Load allocation set

Syntax
allocSet = systemcomposer.allocation.load(name)

Description
allocSet = systemcomposer.allocation.load(name) loads the allocation set with the given
name, if it exists, on the MATLAB path.

Examples

Load Allocation Set and Open in Allocation Editor

% Load the allocation set MyNewAllocation.mldatx
allocSet = systemcomposer.allocation.load('MyNewAllocation')

% Open the allocation editor
systemcomposer.allocation.editor()

Input Arguments
name — Name of allocation set
model object | character vector

Name of allocation set, specified as a systemcomposer.arch.Model object or the name of the
model as a character vector.

Output Arguments
allocSet — Allocation set
allocation set object

Allocation set, returned as a systemcomposer.allocation.AllocationSet object.

See Also
closeAll | createAllocationSet | open

Topics
“Create and Manage Allocations”

Introduced in R2020b

1 Functions

1-132

load
Load profile from file

Syntax
profile = systemcomposer.profile.Profile.load(fileName)

Description
profile = systemcomposer.profile.Profile.load(fileName) loads a profile from a file
name.

Input Arguments
fileName — File name for profile
character vector

File name for profile, specified as a character vector. Profile must be available on the MATLAB path.
Example: 'ProfileFile.xml'
Data Types: char

Output Arguments
profile — Profile loaded
profile object

Profile loaded, returned as a systemcomposer.profile.Profile object.

See Also
close | closeAll | createProfile | find | open | save | systemcomposer.profile.Profile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 load

1-133

loadInstance
Load architecture instance

Syntax
loadInstance(fileName,overwrite)

Description
loadInstance(fileName,overwrite) loads an architecture instance from a MAT-file.

Input Arguments
fileName — File that contains architecture instance
character vector

This is a MAT-file that was previously saved with an architecture instance.

overwrite — Whether to overwrite instance if it already exists in workspace
true | false

If true, the load operation overwrites duplicate instances in the workspace.

See Also
deleteInstance | instantiate | saveInstance | systemcomposer.analysis.Instance |
updateInstance

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-134

loadModel
Load architecture model

Syntax
model = systemcomposer.loadModel(modelName)

Description
model = systemcomposer.loadModel(modelName) loads the architecture model with name
modelName and returns its handle. The loaded model is not displayed.

Examples
model = systemcomposer.loadModel('new_arch')

Input Arguments
modelName — Name of architecture model
character vector

Name of architecture model, specified as a character vector. Architecture model must exist on the
MATLAB path.
Example: 'new_arch'
Data Types: char

Output Arguments
model — Architecture model handle
model object

Architecture model handle, returned as a systemcomposer.arch.Model object.

See Also
open | save

Topics
“Create an Architecture Model”

Introduced in R2019a

 loadModel

1-135

loadProfile
Load profile by name

Syntax
profile = systemcomposer.loadProfile(profileName)

Description
profile = systemcomposer.loadProfile(profileName) loads a profile with the specified file
name.

Input Arguments
profileName — Name of profile
character vector

Name of profile, specified as a character vector. Profile must be available on the MATLAB path.
Example: 'new_profile'
Data Types: char

Output Arguments
profile — Profile handle
profile object

Profile handle, returned as a systemcomposer.profile.Profile object.

Examples
systemcomposer.loadProfile('new_profile')
profile = systemcomposer.loadProfile('new_profile')

See Also
applyProfile | createProfile | systemcomposer.profile.Profile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

1 Functions

1-136

lookup
Package: systemcomposer.arch

Search for architecture element

Syntax
element = lookup(object,Name,Value)

Description
element = lookup(object,Name,Value) finds an architecture element based on its universal
unique identifier (UUID) or full path.

Examples

Look Up Component by Path

lookup(arch,'Path','RobotSystem/Sensors')

ans =

 Component with properties:

 Name: 'Sensors'
 Parent: [1×1 systemcomposer.arch.Architecture]
 Ports: [1×2 systemcomposer.arch.ComponentPort]
 OwnedPorts: []
 Architecture: [1×1 systemcomposer.arch.Architecture]
 OwnedArchitecture: []
 Position: [275 75 391 161]
 Model: [1×1 systemcomposer.arch.Model]
 UUID: 'f43c9d51-9dc6-43fc-b3af-95d458b81248'
 SimulinkHandle: 9.0002
 SimulinkModelHandle: 2.0002
 ExternalUID: ''

Input Arguments
object — Architecture model object
model object

Architecture model object to look up using the UUID, specified as a systemcomposer.arch.Model
object.

 lookup

1-137

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: lookup(arch,'Path','RobotSystem/Sensors')

UUID — Search by UUID
character vector

Search by UUID, specified as the comma-separated pair consisting of 'UUID' and a character vector
of the UUID.
Example: lookup(arch,'UUID','f43c9d51-9dc6-43fc-b3af-95d458b81248')
Data Types: char

SimulinkHandle — Search by simulink handle
double

Search by Simulink handle, specified as the comma-separated pair consisting of 'SimulinkHandle'
and a double of the SimulinkHandle value.
Example: lookup(arch,'SimulinkHandle',9.0002)
Data Types: double

Path — Search by full path
character vector

Search by file path, specified as the comma-separated pair consisting of 'Path' and a character
vector with the path defined.
Example: lookup(arch,'Path','RobotSystem/Sensors')
Data Types: char

Output Arguments
element — Model element
element object

Model element, returned as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, or systemcomposer.arch.Connector object.

See Also
find

Topics
“Analyze Architecture”

Introduced in R2019a

1 Functions

1-138

makeVariant
Convert component to variant choice

Syntax
[variantComp,choices] = makeVariant(components)

Description
[variantComp,choices] = makeVariant(components) converts components to variant
choices and returns the parent component and available choices.

Input Arguments
components — Architecture components
array of architecture component objects

Architecture components to be converted to variants, specified as an array of
systemcomposer.arch.Component objects.

Output Arguments
variantComp — Component containing variants
variant component object

Component containing variants, returned as a systemcomposer.arch.VariantComponent object.

choices — Variant choice names
cell array of character vectors

Variant choice names, returned as a cell array of character vectors.
Data Types: char

See Also
addChoice | addVariantComponent | getChoices

Topics
“Create Variants”

Introduced in R2019a

 makeVariant

1-139

open
Open profile

Syntax
open(profile)

Description
open(profile) opens a profile in the Profile Editor.

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

See Also
close | closeAll | createProfile | find | load | save

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

1 Functions

1-140

open
Open allocation set in allocation editor

Syntax
allocSet = systemcomposer.allocation.open(name)

Description
allocSet = systemcomposer.allocation.open(name) opens allocation set in the allocation
editor if the allocation set is on the MATLAB path.

Input Arguments
name — Name of allocation set
allocation set object | character vector

Name of allocation set, specified as an systemcomposer.allocation.AllocationSet object or
the name as a character vector.

See Also
createAllocationSet | load

Topics
“Create and Manage Allocations”

Introduced in R2020b

 open

1-141

open
Package: systemcomposer.arch

Open architecture model

Syntax
open(objModel)

Description
open(objModel) opens the specified model in System Composer.

open is a method for the class systemcomposer.arch.Model.

Examples

Create and Open a Model

Model = systemcomposer.createModel('modelName');
open(Model)

Input Arguments
objModel — Model to open in editor
model object

Model to open in editor, specified as a systemcomposer.arch.Model object.

See Also
createModel | openModel

Topics
“Create an Architecture Model”

Introduced in R2019a

1 Functions

1-142

systemcomposer.openDictionary
Package: systemcomposer

Open data dictionary

Syntax
dict_id = systemcomposer.openDictionary(dictionaryName)

Description
dict_id = systemcomposer.openDictionary(dictionaryName) opens an existing Simulink
data dictionary to hold interfaces and returns a handle to the
systemcomposer.interface.Dictionary object.

Examples

Open an Existing Dictionary

dict_id = systemcomposer.openDictionary('my_dictionary.sldd')

Input Arguments
dictionaryName — Name of existing data dictionary
character vector

Name of existing data dictionary, specified as a character vector. The name must include the .sldd
extension.
Example: 'my_dictionary.sldd'
Data Types: char

Output Arguments
dict_id — Handle to the dictionary
dictionary object

Handle to the dictionary, returned as a systemcomposer.interface.Dictionary object.

See Also
linkDictionary | systemcomposer.createDictionary | unlinkDictionary

Topics
“Save, Link, and Delete Interfaces”

Introduced in R2019a

 systemcomposer.openDictionary

1-143

openModel
Open System Composer architecture model

Syntax
model = systemcomposer.openModel(modelName)

Description
model = systemcomposer.openModel(modelName) opens the model with name modelName for
editing and returns its handle.

Examples
model = systemcomposer.openModel('new_arch')

Input Arguments
modelName — Name of new model
character vector

Name of new model, specified as a character vector. Model must exist on the MATLAB path.
Example: 'new_arch'
Data Types: char

Output Arguments
model — Model handle
model object

Model handle, returned as a systemcomposer.arch.Model object.

See Also
close | open

Topics
“Create an Architecture Model”

Introduced in R2019a

1 Functions

1-144

openViews
Open architecture views editor

Syntax
openViews(objModel)

Description
openViews(objModel) opens the architecture views editor for the specified model. If the model is
already open, openViews will bring the views to the front.

The method openViews is for the class systemcomposer.arch.Model.

Input Arguments
objModel — Name of model
model object (default) | character vector

Name of model, specified as a character vector or a systemcomposer.arch.Model object.
Data Types: char

See Also

Introduced in R2019b

 openViews

1-145

Property
Package: systemcomposer.query

Create query to select non-evaluated values for properties or stereotype properties for objects based
on specified property name

Syntax
query = Property(name)

Description
query = Property(name) creates a query object that the find method and the
createViewArchitecture method use to select non-evaluated values for properties or stereotype
properties for objects based on specified property name.

Examples

Find Model Elements that Satisfy Property

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*;

Open the Simulink project file.

scKeylessEntrySystem

Open the model.
m = systemcomposer.openModel('KeylessEntryArchitecture');

Create a query to find components that contain the character vector 'Sensor' in their 'Name'
property and run the query, displaying the first.
constraint = contains(Property('Name'),'Sensor');
sensors = find(m,constraint,'Recurse',true,'IncludeReferenceModels',true);
sensors(1)

ans =

1×1 cell array

 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Sensor'}

Input Arguments
name — Property name
character vector

Property name for model element, specified as a character vector as fully qualified name '<profile
name>.<stereotype name>.<property name>' or any property on the designated class.

1 Functions

1-146

Example: 'Name'
Example: 'AutoProfile.BaseComponent.Latency'
Data Types: char

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

See Also
PropertyValue | createViewArchitecture | find | systemcomposer.query.Constraint

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

 Property

1-147

PropertyValue
Package: systemcomposer.query

Create query to select property from object or stereotype property and then evaluate property value

Syntax
query = PropertyValue(name)

Description
query = PropertyValue(name) creates a query object that the find method and the
createViewArchitecture method use to select properties or stereotype properties for objects
based on specified property name and then evaluate the property value.

Examples

Find Model Elements that Satisfy Property Value

Import the package that contains all of the System Composer queries.

import systemcomposer.query.*;

Open the Simulink project file.

scKeylessEntrySystem

Open the model.
m = systemcomposer.openModel('KeylessEntryArchitecture');

Create a query to find components that contain the character vector 'Sensor' in their 'Name'
property and run the query.
constraint = PropertyValue('AutoProfile.BaseComponent.Latency')==30;
latency = find(m,constraint,'Recurse',true,'IncludeReferenceModels',true)

latency =

4×1 cell array

 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Driver Door Lock Actuator'}
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Front Pass Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Driver Door Lock Actuator' }
 {'KeylessEntryArchitecture/Door Lock//Unlock System/Rear Pass Door Lock Actuator' }

Input Arguments
name — Property name
character vector

Property name for model element, specified as a character vector as fully qualified name '<profile
name>.<stereotype name>.<property name>' or any property on the designated class.

1 Functions

1-148

Example: 'Name'
Example: 'AutoProfile.BaseComponent.Latency'
Data Types: char

Output Arguments
query — Query
query constraint object

Query, returned as a systemcomposer.query.Constraint object.

See Also
Property | createViewArchitecture | find | systemcomposer.query.Constraint

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

 PropertyValue

1-149

removeComponent
Package: systemcomposer.view

Remove component from view

Syntax
removeComponent(object,compPath)

Description
removeComponent(object,compPath) removes the component with the specified path.

removeComponent is a method for the class systemcomposer.view.ViewArchitecture.

Input Arguments
object — View architecture
view architecture object

View architecture, specified as a systemcomposer.view.ViewArchitecture object.

compPath — Path to the component
character vector

Path to the component including the name of the top-model, specified as a character vector.
Data Types: char

See Also
addComponent | systemcomposer.view.BaseViewComponent |
systemcomposer.view.ComponentOccurrence | systemcomposer.view.ViewArchitecture |
systemcomposer.view.ViewComponent | systemcomposer.view.ViewElement

Introduced in R2019b

1 Functions

1-150

removeElement
Remove a signal interface element

Syntax
removeElement(interface,elementName)

Description
removeElement(interface,elementName) removes an element from a signal interface.

Examples

Add an Interface and an Element

Add an interface 'newInterface' to the interface dictionary of the model and add an element with
type double to it, then remove the element.

interface = addInterface(arch.InterfaceDictionary,'newInterface');
element = addElement(interface,'newElement','Type',double);
removeElement(interface,'newInterface')

Input Arguments
interface — Interface object
signal interface object

Interface object, specified as a systemcomposer.interface.SignalInterface object.

elementName — Name of element
character vector

Name of element to be removed, specified as a character vector.
Data Types: char

See Also
addElement | getElement

Topics
“Define Interfaces”

Introduced in R2019a

 removeElement

1-151

removeInterface
Remove named interface from interface dictionary

Syntax
removeInterface(dictionary,name)

Description
removeInterface(dictionary,name) removes a named interface from the interface dictionary.

Examples

Remove Interface

Add an interface 'newInterface' to the interface dictionary of the model and then remove it.

addInterface(arch.InterfaceDictionary,'newInterface')
removeInterface(arch.InterfaceDictionary,'newInterface')

Input Arguments
dictionary — Data dictionary attached to architecture model
dictionary object

Data dictionary attached to architecture model, specified as a
systemcomposer.interface.Dictionary object.

name — Name of new interface
character vector

Name of new interface, specified as a character vector.
Data Types: char

See Also
addInterface | getInterface | getInterfaceNames

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-152

removeProfile
Remove profile from model

Syntax
removeProfile(modelObject,profileFile)

Description
removeProfile(modelObject,profileFile) removes the profile from a model.

Examples

Remove a Profile

removeProfile(arch,'SystemProfile')

Input Arguments
modelObject — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

profileFile — Name of profile
character vector

Name of profile, specified as a character vector.
Example: 'SystemProfile'
Data Types: char

See Also
applyProfile | createProfile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 removeProfile

1-153

removeProperty
Remove property from stereotype

Syntax
removeProperty(stereotype,propertyName)

Description
removeProperty(stereotype,propertyName) removes a property from the stereotype.

Examples

Remove a Property

Add a component stereotype and add a VoltageRating property with value 5. Then remove the
property.

stereotype = addStereotype(profile,'electricalComponent','AppliesTo','Component')
property = addProperty(stereotype,'VoltageRating','DefaultValue','5');
removeProperty(stereotype,'VoltageRating');

Input Arguments
stereotype — Stereotype to which property is removed
stereotype object

Stereotype to which property is removed, specified as a systemcomposer.profile.Stereotype
object.

propertyName — Name of property
character vector

Name of property to be removed, specified as a character vector.
Data Types: char

See Also
addProperty | getProperty

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

1 Functions

1-154

removeStereotype
Remove stereotype from model element

Syntax
removeStereotype(element,stereotype)

Description
removeStereotype(element,stereotype) removes a stereotype from the mode element. The
function removes the specified stereotype if it is already applied to a model element.

Input Arguments
element — Model element
architecture object | component object | port object | connector object

Model element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, or systemcomposer.arch.Connector object.

stereotype — Fully qualified name of stereotype
character vector

Fully qualified name of stereotype, specified as a character vector in the form
'<profile>.<stereotype>'. The profile must already be applied to the model. The stereotype can
also be specified as a systemcomposer.profile.Stereotype object.
Data Types: char

See Also
applyStereotype | batchApplyStereotype | getStereotypes

Topics
“Remove a Stereotype”

Introduced in R2019a

 removeStereotype

1-155

renameProfile
Rename profile in model

Syntax
renameProfile(modelName,oldProfileName,newProfileName)

Description
renameProfile(modelName,oldProfileName,newProfileName) renames a profile on a model
from oldProfileName to newProfileName.

Input Arguments
modelName — Model architecture
model object | character vector

Model architecture, specified as a systemcomposer.arch.Model object or a character vector as
the name of the model.
Example: 'MyModel'
Example: archModel
Data Types: char

oldProfileName — Old profile name
character vector

Old profile name, specified as a character vector.
Example: 'MyProfile'
Data Types: char

newProfileName — New profile name
character vector

New profile name, specified as a character vector.
Example: 'MyProfileNew'
Data Types: char

See Also
close | open | save

Introduced in R2020b

1 Functions

1-156

save
Save profile as file

Syntax
filePath = save(profile,dirPath)

Description
filePath = save(profile,dirPath) saves profile to disk as file specified in its Name property
with a .xml extension. Saves to the current directory if the optional dirPath is left blank.

Examples

Save Profile

Create a profile named 'NewProfile' and save it in the current directory.

profile = systemcomposer.profile.Profile.createProfile('NewProfile');
path = save(profile);

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

dirPath — Path to save
character vector

Path to save, specified as a character vector. Current directory is the default if no path is specified.
Example: 'C:\Temp'
Data Types: char

Output Arguments
filePath — File path
character vector

File path where profile is saved, returned as a character vector.

See Also
close | closeAll | createProfile | find | load | open

Topics
“Define Profiles and Stereotypes”

 save

1-157

Introduced in R2019a

1 Functions

1-158

save
Save allocation set

Syntax
save

Description
save saves the allocation set.

Examples

Create Allocation Set and Save
% Create the allocation set with name MyNewAllocation.
allocSet = systemcomposer.allocation.createAllocationSet('MyNewAllocation', ...
 'Source_Model_Allocation', 'Target_Model_Allocation');

% Save the allocation set
allocSet.save;

See Also
createAllocationSet | createScenario | deleteScenario | getScenario |
systemcomposer.allocation.AllocationSet

Topics
“Create and Manage Allocations”

Introduced in R2020b

 save

1-159

save
Save the architecture model or data dictionary

Syntax
save(architecture)
save(dictionary)

Description
save(architecture) saves the architecture model to the file specified in its Name property.

save(dictionary) saves the data dictionary.

Examples

Save Model and Data Dictionary

save(arch);
save(arch.InterFaceDictionary);

Input Arguments
architecture — Architecture model
model object

Architecture model, specified as a systemcomposer.arch.Model object.

dictionary — Data dictionary
dictionary object

Data dictionary attached to the architecture model, specified as a
systemcomposer.interface.Dictionary object.

See Also
close | loadModel

Topics
“Create an Architecture Model”
“Save, Link, and Delete Interfaces”

Introduced in R2019a

1 Functions

1-160

saveAsModel
Save architecture to separate model

Syntax
saveAsModel(component,modelName)

Description
saveAsModel(component,modelName) saves the architecture of the component to a separate
architecture model and references the model from this component.

Examples

Save Component

Save the component robotComp in Robot.slx and reference the model.

saveAsModel(robotComp,'Robot');

Input Arguments
component — Architecture component
component object

Architecture component, specified as a systemcomposer.arch.Component object. The component
must have an architecture with definition type composition. For other definition types, this function
gives an error.

modelName — Model name
character vector

Model name, specified as a character vector.
Data Types: char

See Also
inlineComponent | linkToModel

Topics
“Decompose and Reuse Components”

Introduced in R2019a

 saveAsModel

1-161

saveInstance
Save architecture instance

Syntax
saveInstance(architectureInstance,fileName)

Description
saveInstance(architectureInstance,fileName) saves an architecture instance to a MAT-file.

Input Arguments
architectureInstance — Architecture instance
instance object

Architecture instance to be saved, specified as a
systemcomposer.analysis.ArchitectureInstance object.

fileName — File to save the instance
character vector

This is a MAT-file to save the architecture instance.
Data Types: char

See Also
deleteInstance | instantiate | loadInstance | systemcomposer.analysis.Instance |
updateInstance

Topics
“Write Analysis Function”

Introduced in R2019a

1 Functions

1-162

setActiveChoice
Set active choice on variant component

Syntax
setActiveChoice(variantComponent,choice)

Description
setActiveChoice(variantComponent,choice) sets the active choice on the variant component.

Examples

Set Active Choice

Create a model, get the root architecture, create one variant component, add two choices for the
variant component, and set the active choice.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
variant = addVariantComponent(arch,'Component1');
compList = addChoice(variant,{'Choice1','Choice2'});
setActiveChoice(variant,compList(2));

Input Arguments
variantComponent — Architecture component
variant component object

Architecture component, specified as a systemcomposer.arch.VariantComponent object with
multiple choices.

choice — Active choice in a variant component
component object | label of variant choice

Active choice in a variant component, specified as a systemcomposer.arch.Component object or
label of the variant choice as a character vector.

See Also
addChoice | addVariantComponent | getActiveChoice | getChoices

Topics
“Create Variants”

Introduced in R2019a

 setActiveChoice

1-163

setComplexity
Set complexity for signal interface element

Syntax
setComplexity(interfaceElem,complexity)

Description
setComplexity(interfaceElem,complexity) sets the complexity for the designated signal
interface element.

Examples

Set Complexity for Interface Element

Create a model named 'archModel', add an interface, create an interface element with a name 'x',
and set the complexity for the interface element 'complex'.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
elem = interface.addElement('x'); % Create interface element

setComplexity(elem,'complex'); % Set complexity for interface element

Input Arguments
interfaceElem — Interface element
signal element object

Interface element, specified as a systemcomposer.interface.SignalElement object.

complexity — Complexity of interface element
'real' (default) | 'complex'

Complexity of interface element, specified as a character vector with values 'real' or 'complex'.
Data Types: char

See Also
addElement | addInterface | createModel | systemcomposer.interface.SignalElement

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-164

setCondition
Set condition on variant choice

Syntax
setCondition(variantComponent,choice,expression)

Description
setCondition(variantComponent,choice,expression) sets the variant control for a choice
for the variant component.

Examples

Set Condition

Create a model, get the root architecture, create one variant component, add two choices for the
variant component, set the active choice, and set a condition.

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
mode = 1;
variant = addVariantComponent(arch,'Component1');
compList = addChoice(variant,{'Choice1','Choice2'});
setActiveChoice(variant,compList(2));
setCondition(variant,compList(2),'mode == 2');

Input Arguments
variantComponent — Architecture component
variant component object

Architecture component, specified as a systemcomposer.arch.VariantComponent object. This
component contains multiple choices.

choice — Choice in variant component
component object

Choice in variant component whose control string is set by this function, specified by a
systemcomposer.arch.Component object.

expression — Control string
character vector

Control string that controls the selection of choice, specified as a character vector.
Data Types: char

 setCondition

1-165

See Also
addChoice | addVariantComponent | getActiveChoice | getCondition | makeVariant |
setActiveChoice

Topics
“Create Variants”

Introduced in R2019a

1 Functions

1-166

setDefaultComponentStereotype
Set default stereotype for components

Syntax
setDefaultComponentStereotype(stereotype,stereotypeName)

Description
setDefaultComponentStereotype(stereotype,stereotypeName) specifies the default
stereotype stereotypeName of the children whose parent component has stereotype applied.

Input Arguments
stereotype — Stereotype of parent component
stereotype object

Stereotype of parent component, specified as a systemcomposer.profile.Stereotype object.

stereotypeName — Fully qualified name of default stereotype
character vector

Fully qualified name of default stereotype for child components, specified as a character vector in the
form '<profile>.<stereotype>'.
Data Types: char

See Also
applyStereotype | removeStereotype | setDefaultConnectorStereotype |
setDefaultPortStereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 setDefaultComponentStereotype

1-167

setDefaultConnectorStereotype
Set default stereotype for connectors

Syntax
setDefaultConnectorStereotype(stereotype,stereotypeName)

Description
setDefaultConnectorStereotype(stereotype,stereotypeName) specifies the default
stereotype stereotypeName of the connectors within the parent component that has stereotype
applied.

Input Arguments
stereotype — Stereotype of parent component
stereotype object

Stereotype of parent component, specified as a systemcomposer.profile.Stereotype object.

stereotypeName — Fully qualified name of default stereotype
character vector

Fully qualified name of default stereotype for connectors, specified as a character vector in the form
'<profile>.<stereotype>'.
Data Types: char

See Also
applyStereotype | removeStereotype | setDefaultComponentStereotype |
setDefaultPortStereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

1 Functions

1-168

setDefaultPortStereotype
Set default stereotype for ports

Syntax
setDefaultPortStereotype(stereotype,stereotypeName)

Description
setDefaultPortStereotype(stereotype,stereotypeName) specifies the default stereotype
stereotypeName of the ports of the parent component that has stereotype applied.

Input Arguments
stereotype — Stereotype of parent component
stereotype object

Stereotype of parent component, specified as a systemcomposer.profile.Stereotype object.

stereotypeName — Fully qualified name of default stereotype
character vector

Fully qualified name of default stereotype for ports, specified as a character vector in the form
'<profile>.<stereotype>'.
Data Types: char

See Also
applyStereotype | removeStereotype | setDefaultComponentStereotype |
setDefaultConnectorStereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

 setDefaultPortStereotype

1-169

setDefaultStereotype
Set default stereotype for profile

Syntax
setDefaultStereotype(profile,stereotypeName)

Description
setDefaultStereotype(profile,stereotypeName) sets the default stereotype for a profile.

Input Arguments
profile — Profile
profile object

Profile, specified as a systemcomposer.profile.Profile object.

stereotypeName — Stereotype name
character vector

Stereotype name, specified as a character vector. The stereotype must be present in the profile.
Example: 'ComponentStereotype'
Data Types: char

See Also
addStereotype | createProfile | getDefaultStereotype | getStereotype

Topics
“Create a Profile and Add Stereotypes”

Introduced in R2019a

1 Functions

1-170

setDescription
Set description for signal interface element

Syntax
setDescription(interfaceElem,description)

Description
setDescription(interfaceElem,description) sets the description for the designated signal
interface element.

Examples

Set Description for Interface Element

Create a model named 'archModel', add an interface, create an interface element with a name 'x',
and set the description for the interface element 'Test Description'.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
elem = interface.addElement('x'); % Create interface element

setDescription(elem,'Test Description'); % Set description for interface element

Input Arguments
interfaceElem — Interface element
signal element object

Interface element, specified as a systemcomposer.interface.SignalElement object.

description — Description of interface element
character vector

Description of interface element, specified as a character vector.
Data Types: char

See Also
addElement | addInterface | createModel | systemcomposer.interface.SignalElement

Topics
“Define Interfaces”

Introduced in R2019a

 setDescription

1-171

setDimensions
Set dimensions for signal interface element

Syntax
setDimensions(interfaceElem,dimensions)

Description
setDimensions(interfaceElem,dimensions) sets the dimensions for the designated signal
interface element.

Examples

Set Dimensions for Interface Element

Create a model named 'archModel', add an interface, create an interface element with a name 'x',
and set the dimensions for the interface element '2'.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
elem = interface.addElement('x'); % Create interface element

setDimensions(elem,'2'); % Set dimensions for interface element

Input Arguments
interfaceElem — Interface element
signal element object

Interface element, specified as a systemcomposer.interface.SignalElement object.

dimensions — Dimensions of interface element
character vector

Dimensions of interface element, specified as a character vector.
Data Types: char

See Also
addElement | addInterface | createModel | systemcomposer.interface.SignalElement

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-172

setMaximum
Set maximum for signal interface element

Syntax
setMaximum(interfaceElem,maximum)

Description
setMaximum(interfaceElem,maximum) sets the maximum for the designated signal interface
element.

Examples

Set Maximum for Interface Element

Create a model named 'archModel', add an interface, create an interface element with a name 'x',
and set the maximum for the interface element '5.72'.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
elem = interface.addElement('x'); % Create interface element

setMaximum(elem,'5.72'); % Set maximum for interface element

Input Arguments
interfaceElem — Interface element
signal element object

Interface element, specified as a systemcomposer.interface.SignalElement object.

maximum — Maximum of interface element
character vector

Maximum of interface element, specified as a character vector.
Data Types: char

See Also
addElement | addInterface | createModel | systemcomposer.interface.SignalElement

Topics
“Define Interfaces”

Introduced in R2019a

 setMaximum

1-173

setMinimum
Set minimum for signal interface element

Syntax
setMinimum(interfaceElem,minimum)

Description
setMinimum(interfaceElem,minimum) sets the minimum for the designated signal interface
element.

Examples

Set Minimum for Interface Element

Create a model named 'archModel', add an interface, create an interface element with a name 'x',
and set the minimum for the interface element '1.12'.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
elem = interface.addElement('x'); % Create interface element

setMinimum(elem,'1.12'); % Set minimum for interface element

Input Arguments
interfaceElem — Interface element
signal element object

Interface element, specified as a systemcomposer.interface.SignalElement object.

minimum — Minimum of interface element
character vector

Minimum of interface element, specified as a character vector.
Data Types: char

See Also
addElement | addInterface | createModel | systemcomposer.interface.SignalElement

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-174

setName
Set name for signal interface element

Syntax
setName(interfaceElem,name)

Description
setName(interfaceElem,name) sets the name for the designated signal interface element.

Examples

Set New Name for Interface Element

Create a model named 'archModel', add an interface, create an interface element with a name 'x',
and set a new name for the interface element 'newName'.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
elem = interface.addElement('x'); % Create interface element

setName(elem,'newName'); % Set new name for interface element

Input Arguments
interfaceElem — Interface element to be renamed
signal element object

Interface element to be renamed, specified as a systemcomposer.interface.SignalElement
object.

name — Name of interface element
character vector

Name of interface element, specified as a character vector.
Data Types: char

See Also
addElement | addInterface | createModel | systemcomposer.interface.SignalElement

Topics
“Define Interfaces”

Introduced in R2019a

 setName

1-175

setName
Set name for port

Syntax
setName(port,name)

Description
setName(port,name) sets the name for the designated port.

Examples

Set New Name for Port

Create a model, get the root architecture, add a component, add a port, and set a new name for the
port.

model = systemcomposer.createModel('archModel');
rootArch = get(model,'Architecture');
newcomponent = addComponent(rootArch,'NewComponent');
newport = addPort(newcomponent.Architecture,'NewCompPort','in');
setName(newport,'CompPort');

Input Arguments
port — Port to be renamed
port object

Port to be renamed, specified as a systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort object.

name — Name of port
character vector

Name of port, specified as a character vector.
Data Types: char

See Also
systemcomposer.arch.ArchitecturePort | systemcomposer.arch.ComponentPort

Introduced in R2019a

1 Functions

1-176

setInterface
Set interface for port

Syntax
setInterface(port,interface)

Description
setInterface(port,interface) sets the interface for a port.

Examples

Set Interface for Port

Create a model, get the root architecture, add a component, add a port, add an interface, and set the
interface for the port.

model = systemcomposer.createModel('archModel');
rootArch = get(model,'Architecture');
newcomponent = addComponent(rootArch,'NewComponent');
newport = addPort(newcomponent.Architecture,'NewCompPort','in');
newinterface = addInterface(model.InterfaceDictionary,'NewInterface');
setInterface(newport,newinterface);

Input Arguments
port — Port to be edited
port object

Port to be edited, specified as a systemcomposer.arch.ArchitecturePort or
systemcomposer.arch.ComponentPort object.

interface — Interface to set
signal interface object

Interface to set, specified as a systemcomposer.interface.SignalInterface object.

See Also
systemcomposer.arch.ArchitecturePort | systemcomposer.arch.ComponentPort

Topics
“Define Interfaces”

Introduced in R2019a

 setInterface

1-177

setProperty
Set property value corresponding to stereotype applied to element

Syntax
setProperty(element,propertyName,propertyValue,propertyUnits)

Description
setProperty(element,propertyName,propertyValue,propertyUnits) sets the value and
units of the property specified in the propertyName argument. Set the property corresponding to an
applied stereotype by qualified name '<stereotype>.<property>'. This is the verbose approach
to setting a property.

Examples

Apply a Stereotype and Set Numeric Property Value

In this example, weight is a property of the stereotype sysComponent.

applyStereotype(element,'sysProfile.sysComponent')
setProperty(element,'sysComponent.weight','5','g')

Apply a Stereotype and Set String Property Value

In this example, description is a property of the stereotype sysComponent.

expression = sprintf("'%s'",'component description')
setProperty(element,'sysComponent.description',expression)

Input Arguments
element — Architecture model element
component object | port object | connector object

Architecture model element, specified as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.ComponentPort,
systemcomposer.arch.ArchitecturePort, systemcomposer.arch.Connector, or
systemcomposer.arch.Element object.

propertyName — Name of the property
character vector

Qualified name of the property in the form '<stereotype>.<property>'.
Data Types: char

1 Functions

1-178

propertyValue — Value of property
character vector | numeric | enumeration

Specify numeric values in single quotes. Specify string values in the sprintf("'%s'",'<property
value>') form. See example on this page.
Data Types: char | double | enum

propertyUnits — Units of property
character vector

Units of property to interpret property values, specified as a character vector.
Data Types: char

See Also
getProperty | removeProperty

Topics
“Set Tags and Properties for Analysis”

Introduced in R2019a

 setProperty

1-179

setType
Set type for signal interface element

Syntax
setType(interfaceElem,type)

Description
setType(interfaceElem,type) sets the type for the designated signal interface element.

Examples

Set Type for Interface Element

Create a model named 'archModel', add an interface, create an interface element with a name 'x',
and set the type for the interface element 'single'.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
elem = interface.addElement('x'); % Create interface element

setType(elem,'single'); % Set type for interface element

Input Arguments
interfaceElem — Interface element
signal element object

Interface element, specified as a systemcomposer.interface.SignalElement object.

type — Type of interface element
character vector

Type of interface element, specified as a character vector for a valid MATLAB data type.
Data Types: char

See Also
addElement | addInterface | createModel | systemcomposer.interface.SignalElement

Topics
“Define Interfaces”

Introduced in R2019a

1 Functions

1-180

setUnits
Set units for signal interface element

Syntax
setUnits(interfaceElem,units)

Description
setUnits(interfaceElem,units) sets the units for the designated signal interface element.

Examples

Set Units for Interface Element

Create a model named 'archModel', add an interface, create an interface element with a name 'x',
and set the units for the interface element 'kg'.

modelName = 'archModel';
arch = systemcomposer.createModel(modelName); % Create model

interface = arch.InterfaceDictionary.addInterface('interface'); % Add interface
elem = interface.addElement('x'); % Create interface element

setUnits(elem,'kg'); % Set units for interface element

Input Arguments
interfaceElem — Interface element
signal element object

Interface element, specified as a systemcomposer.interface.SignalElement object.

units — Units of interface element
character vector

Units of interface element, specified as a character vector.
Data Types: char

See Also
addElement | addInterface | createModel | systemcomposer.interface.SignalElement

Topics
“Define Interfaces”

Introduced in R2019a

 setUnits

1-181

setValue
Set value of property for element instance

Syntax
setValue(instance,property,value)

Description
setValue(instance,property,value) sets the property of the instance to value. This
function is part of the instance API that you can use to analyze the model iteratively, element by
element.instance refers to the element instance on which the iteration is being performed.

Examples

Set the Weight Property

Assume that a MechComponent stereotype is attached to the specification of the instance.

setValue(instance,'MechComponent.weight',10);

Input Arguments
instance — Element instance
architecture instance | component instance | port instance | connector instance

Element instance, specified by a systemcomposer.analysis.ArchitectureInstance,
systemcomposer.analysis.ComponentInstance,
systemcomposer.analysis.PortInstance, or
systemcomposer.analysis.ConnectorInstance object. This function is part of the instance API
that you can use to analyze the model iteratively, element by element.instance refers to the element
instance on which the iteration is being performed.

property — Property
character vector

Property, specified as a character vector in the form '<stereotype>.<property>'.

value — Property value
double (default) | single | int64 | int32 | int16 | int8 | uint64 | uint32 | uint8 | boolean |
string | enumeration class name

Property value, specified as a data type that depends on how the property is defined in the profile.

See Also
getValue | systemcomposer.analysis.Instance

1 Functions

1-182

Topics
“Write Analysis Function”

Introduced in R2019a

 setValue

1-183

unlinkDictionary
Unlink data dictionary from architecture model

Syntax
unlinkDictionary(modelObject)

Description
unlinkDictionary(modelObject) removes the association of the model from its data dictionary.

Examples
Unlink the Data Dictionary

unlinkDictionary(arch);

Input Arguments
modelObject — Architecture model object
model object

Architecture model object from which the dictionary link is to be removed, specified as a
systemcomposer.arch.Model object.

See Also
linkDictionary | systemcomposer.createDictionary | systemcomposer.openDictionary

Topics
“Save, Link, and Delete Interfaces”

Introduced in R2019a

1 Functions

1-184

updateInstance
Update architecture instance

Syntax
updateInstance(architectureInstance,updateFlag)

Description
updateInstance(architectureInstance,updateFlag) updates an instance to mirror the
changes in the specification model.

Input Arguments
architectureInstance — Architecture instance
instance object

Architecture instance to be updated, specified as a
systemcomposer.analysis.ArchitectureInstance object.

updateFlag — Whether to update values changed directly in model
true | false

If true, the method reflects changes made directly in the specification model to the instance model.
Data Types: logical

See Also
deleteInstance | instantiate | loadInstance | saveInstance |
systemcomposer.analysis.Instance

Topics
“Write Analysis Function”

Introduced in R2019a

 updateInstance

1-185

Classes

2

systemcomposer.allocation.AllocationSet
Manage set of allocation scenarios

Description
The AllocationSet defines a collection of allocation scenarios between two models.

Creation
% Create the allocation set with name MyNewallocation.
systemcomposer.allocation.createAllocationSet('MyNewallocation', ...
 'Source_Model_Allocation', 'Target_Model_Allocation');

% Open the allocation editor
systemcomposer.allocation.editor()

Properties
Name — Name of allocation set
character vector

Name of allocation set, returned as a character vector.
Data Types: char

SourceModel — Source model for allocation
model object | character vector

Source model for allocation, returned as a systemcomposer.arch.Model object or the name of a
model as a character vector.

TargetModel — Target model for allocation
model object | character vector

Target model for allocation, returned as a systemcomposer.arch.Model object or the name of a
model as a character vector.

Scenarios — Allocation scenarios
cell array of allocation scenario objects

Allocation scenarios, returned as a cell array of
systemcomposer.allocation.AllocationScenario objects.

NeedsRefresh — Indicates if allocation set is out of date
true or 1 | false or 0

Indicates if allocation set is out of date with the source and/or target model, returned as a logical or
numeric with values 1 (true) or 0 (false).
Data Types: logical

2 Classes

2-2

Dirty — Indicates if allocation has unsaved changes
true or 1 | false or 0

Indicates if the allocation set has unsaved changes, returned as a logical or numeric with values 1
(true) or 0 (false).
Data Types: logical

Object Functions
close Close allocation set
closeAll Close all loaded allocation sets
createScenario Create new empty allocation scenario
deleteScenario Delete allocation scenario
find Find loaded allocation set
getScenario Get allocation scenario
save Save allocation set

See Also
createAllocationSet | systemcomposer.allocation.Allocation |
systemcomposer.allocation.AllocationScenario | systemcomposer.allocation.editor

Topics
“Create and Manage Allocations”

Introduced in R2020b

 systemcomposer.allocation.AllocationSet

2-3

systemcomposer.analysis.Instance
Class that represents architecture model element in analysis instance

Description
The Instance class represents an instance of an architecture.

Creation
Create an instance of an architecture

instance = instantiate(modelHandle,architecture,properties,name)

Properties
Name — Name of instance
character vector

Name of instance, returned as a character vector.
Data Types: char

Specification — Specification for creating instance
architecture | component | port | connector

Specification for creating instance, returned as a systemcomposer.arch.Architecture,
systemcomposer.arch.Component, systemcomposer.arch.ArchitecturePort,
systemcomposer.arch.ComponentPort, or systemcomposer.arch.Connector object. The
specification depends on the kind of instance.

Architecture Instance Properties

Components — Child components of instance
array of components

Child components of instance, returned as an array of
systemcomposer.analysis.ComponentInstance objects.

Ports — Ports of architecture instance
array of ports

Ports of architecture instance, returned as an array of systemcomposer.analysis.PortInstance
objects.

Connectors — Connectors in architecture instance
array of connectors

Connectors in architecture instance, returned as an array of
systemcomposer.analysis.ConnectorInstance objects, connecting child components.

2 Classes

2-4

Specification — References element in model
architecture object

References element in model, returned as a systemcomposer.analysis.ArchitectureInstance
object.

Component Instance Properties

Components — Child components of instance
array of components

Child components of instance, returned as an array of
systemcomposer.analysis.ComponentInstance objects within the architecture.

Ports — Ports of component instance
array of ports

Ports of component instance, returned as an array of systemcomposer.analysis.PortInstance
objects.

Connectors — Connectors in component instance
array of connectors

Connectors in component instance, connecting child components, returned as an array of
systemcomposer.analysis.ConnectorInstance objects.

Parent — Parent of the component
architecture object

Parent of the component, returned as a systemcomposer.analysis.ArchitectureInstance
object.

Specification — References element in model
architecture object

References element in model, returned as a systemcomposer.analysis.ArchitectureInstance
object.

Port Instance Properties

Parent — Component that contains the port
component instance object

Component that contains the port, returned as a
systemcomposer.analysis.ComponentInstance object.

Connector Instance Properties

Parent — Component that contains connector
component instance object

Component that contains connector, returned as a
systemcomposer.analysis.ComponentInstance object.

SourcePort — Source port instance
port instance object

 systemcomposer.analysis.Instance

2-5

Source port instance, returned as a systemcomposer.analysis.PortInstance object.

DestinationPort — Destination port instance
port instance object

Destination port instance, returned as a systemcomposer.analysis.PortInstance object.

Specification — References element in model
architecture object

References element in model, returned as a systemcomposer.analysis.ArchitectureInstance
object.

Object Functions
getValue Get value of property from element instance
setValue Set value of property for element instance
isArchitecture Find if instance is architecture instance
isComponent Find if instance is component instance
isConnector Find if instance is connector instance
isPort Find if instance is port instance

See Also
deleteInstance | instantiate | loadInstance | saveInstance | updateInstance

Topics
“Write Analysis Function”

Introduced in R2019a

2 Classes

2-6

systemcomposer.arch.Architecture
Class that represents architecture in architecture model

Description
The Architecture class represents an architecture in the model. This class inherits from
systemcomposer.base.BaseElement and implements the interface
systemcomposer.base.BaseArchitecture.

Creation
Create a model and get the root architecture:

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture')

Properties
Name — Name of architecture
character vector

Name of architecture, returned as a character vector. The architecture name is derived from the
parent component or model name to which the architecture belongs.
Example: 'system_architecture'
Data Types: char

Definition — Definition type of architecture
composition | behavior | view

Definition type of architecture, returned as a composition, a behavior model, or a view.
Data Types: ArchitectureDefinition enum

Parent — Handle to parent component
component object

Handle to parent component that owns architecture, returned as a
systemcomposer.arch.Component object.

Components — Array of handles to set of child components
array of component objects

Array of handles to set of child components of architecture, returned as an array of
systemcomposer.arch.Component objects.

Ports — Array of architecture ports
array of architecture port objects

 systemcomposer.arch.Architecture

2-7

Array of architecture ports of architecture, returned as an array of
systemcomposer.arch.ArchitecturePort objects.

Connectors — Array of connectors that connect child components of this architecture
array of connector objects

Array of connectors that connect child components of this architecture, returned as an array of
systemcomposer.arch.Connector objects.

Object Functions
addComponent Add components to architecture
addVariantComponent Add variant components to architecture
addPort Add ports to architecture
connect Create architecture model connections
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
batchApplyStereotype Apply stereotype to all elements in specified architecture
iterate Iterate over model elements
instantiate Create analysis instance from specification
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
removeProfile Remove profile from model
applyProfile Apply profile to a model
getEvaluatedPropertyValue Get evaluated value of property from component

See Also
systemcomposer.arch.Component | systemcomposer.arch.Element

Topics
“Create an Architecture Model”

Introduced in R2019a

2 Classes

2-8

systemcomposer.arch.ArchitecturePort
Represent input and output ports of architecture

Description
This class inherits from systemcomposer.arch.BasePort.

Creation
port = addPort(archObj,'in')

The addPort method is the constructor for the systemcomposer.arch.ArchitecturePort class.

Properties
Name — Name of port
character vector

Name of port, returned as a character vector.
Data Types: char

Direction — Port direction
'Input' | 'Output'

Port direction, returned as a character array with values 'Input' and 'Output'.
Data Types: char

InterfaceName — Name of interface associated with port
character vector

Name of interface associated with port, returned as a character vector.
Data Types: char

Interface — Interface associated with port
signal interface object

Interface associated with port, returned as a systemcomposer.interface.SignalInterface
object.

Connectors — Port connectors
connector object

Port connectors, returned as a systemcomposer.arch.Connector object.

Connected — Whether port has connections
true or 1 | false or 0

 systemcomposer.arch.ArchitecturePort

2-9

Whether port has connections, returned as a logical or numeric value 1 (true) or 0 (false).
Data Types: logical

Parent — Architecture that owns port
architecture object

Architecture that owns port, returned as a systemcomposer.arch.Architecture object.

Object Functions
connect Create architecture model connections
setName Set name for port
setInterface Set interface for port
createAnonymousInterface Create and set anonymous interface for port
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
destroy Remove and destroy model element
getEvaluatedPropertyValue Get evaluated value of property from component

See Also
addPort | systemcomposer.arch.BasePort | systemcomposer.arch.ComponentPort |
systemcomposer.arch.Element

Topics
“Create an Architecture Model”

Introduced in R2019a

2 Classes

2-10

systemcomposer.arch.BaseComponent
Common base class for all components in architecture model

Description
A systemcomposer.arch.BaseComponent cannot be constructed. Either create a
systemcomposer.arch.Component or systemcomposer.arch.VariantComponent.

Properties
Parent — Architecture that owns component
architecture object

Architecture that owns component, returned as a systemcomposer.arch.Architecture object.

Ports — Input and output ports of component
component port object

Input and output ports of component, returned as a systemcomposer.arch.ComponentPort
object.

OwnedArchitecture — Architecture owned by component
architecture object

Architecture owned by component, returned as a systemcomposer.arch.Architecture object.

Position — Position of component on canvas
vector of coordinates in pixels

Position of component on canvas, returned as a vector of coordinates, in pixels [left top right
bottom].

Object Functions
getStereotypes Get stereotypes applied on element of architecture model
getProperty Get property value corresponding to stereotype applied to element
setProperty Set property value corresponding to stereotype applied to element
getEvaluatedPropertyValue Get evaluated value of property from component
getPort Get object for signal interface element
applyStereotype Apply stereotype to architecture model element
connect Create architecture model connections
destroy Remove and destroy model element
isReference Find if component is reference to another model
removeStereotype Remove stereotype from model element

See Also

Introduced in R2019b

 systemcomposer.arch.BaseComponent

2-11

systemcomposer.arch.BasePort
Common base class for all ports in architecture model

Description
A systemcomposer.arch.Baseport cannot be constructed. Create a
systemcomposer.arch.ArchitecturePort.

Properties
Name — Name of port
character vector

Name of port, returned as a character vector.
Data Types: char

Direction — Port direction
'Input' | 'Output'

Port direction, returned as a character array with values 'Input' and 'Output'.
Data Types: char

InterfaceName — Name of interface associated with port
character vector

Name of interface associated with port, returned as a character vector.
Data Types: char

Interface — Interface associated with port
signal interface object

Interface associated with port, returned as a systemcomposer.interface.SignalInterface
object.

Connectors — Port connectors
connector object

Port connectors, returned as a systemcomposer.arch.Connector object.

Connected — Whether port has connections
true or 1 | false or 0

Whether port has connections, returned as a logical or numeric value 1 (true) or 0 (false).
Data Types: logical

Object Functions
getProperty Get property value corresponding to stereotype applied to element

2 Classes

2-12

setProperty Set property value corresponding to stereotype applied to element
getEvaluatedPropertyValue Get evaluated value of property from component
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
destroy Remove and destroy model element

See Also
systemcomposer.arch.ArchitecturePort | systemcomposer.arch.ComponentPort |
systemcomposer.arch.Element

Topics
“Ports”

Introduced in R2019a

 systemcomposer.arch.BasePort

2-13

systemcomposer.arch.Component
Class that represents component or view component

Description
The Component class represents a component in the architecture model. This class inherits from
systemcomposer.arch.BaseComponent.

Creation
Create a component in an architecture model:

model = systemcomposer.createModel('archModel');
arch = get(model,'Architecture');
component = addComponent(arch,'NewComponent');

Properties
Name — Name of component
character vector

Name of component, returned as a character vector.
Data Types: char

Parent — Handle to parent architecture that owns component
architecture object

Handle to parent architecture that owns component, returned as a
systemcomposer.arch.Architecture object.

Architecture — Architecture that defines component structure
architecture object

Architecture that defines component structure, returned as a
systemcomposer.arch.Architecture object. For a component that references a different
architecture model, this property returns a handle to the root architecture of that model. For variant
components, the architecture is that of the active variant.

OwnedArchitecture — Architecture that component owns
architecture object

Architecture that component owns, returned as a systemcomposer.arch.Architecture object.
For components that reference an architecture, this property is empty. For variant components, this
property is the architecture in which the individual variant components reside.

Ports — Array of component ports
array of component port objects

2 Classes

2-14

Array of component ports, returned as an array of systemcomposer.arch.ComponentPort
objects.

OwnedPorts — Array of component ports
array of component port objects

Array of component ports, returned as an array of systemcomposer.arch.ComponentPort
objects. For reference components, this property is empty.

ReferenceName — If linked component, name of model that component references
character vector

If linked component, name of model that component references, returned as a character vector.
Data Types: char

Object Functions
saveAsModel Save architecture to separate model
createSimulinkBehavior Create Simulink model and link component to it
linkToModel Link component to a model
inlineComponent Inline reference architecture into model
makeVariant Convert component to variant choice
isReference Find if component is reference to another model
connect Create architecture model connections
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
destroy Remove and destroy model element
getPort Get port from component
getEvaluatedPropertyValue Get evaluated value of property from component

See Also
addComponent | createModel | systemcomposer.arch.Architecture |
systemcomposer.arch.Element

Topics
“Create an Architecture Model”

Introduced in R2019a

 systemcomposer.arch.Component

2-15

systemcomposer.arch.ComponentPort
Represents input and output ports of component

Description
This class inherits from systemcomposer.arch.BasePort.

Creation
A component port is constructed by creating an architecture port on the architecture of the
component.

addPort(compObj.Architecture,portName,'in')

compPortObj = getPort(compObj,portName)

Properties
Name — Name of port
character vector

Name of port, returned as a character vector.
Data Types: char

Direction — Port direction
'Input' | 'Output'

Port direction, returned as a character array with values 'Input' and 'Output'.
Data Types: char

InterfaceName — Name of interface
character vector

Name of interface associated with port, returned as a character vector.
Data Types: char

Interface — Interface associated with port
signal interface object

Interface associated with port, returned as a systemcomposer.interface.SignalInterface
object.

Connectors — Port connectors
connector object

Port connectors, returned as a systemcomposer.arch.Connector object.

2 Classes

2-16

Connected — Whether port has connections
true or 1 | false or 0

Whether port has connections, returned as a logical or numeric value 1 (true) or 0 (false).
Data Types: logical

Parent — Component that owns port
architecture object

Component that owns port, returned as a systemcomposer.arch.Architecture object.

ArchitecturePort — Architecture port
architecture port object

Architecture port within the component that maps to port, returned as a
systemcomposer.arch.ArchitecturePort object.

Object Functions
connect Create architecture model connections
setName Set name for port
setInterface Set interface for port
createAnonymousInterface Create and set anonymous interface for port
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
destroy Remove and destroy model element
getEvaluatedPropertyValue Get evaluated value of property from component

See Also
addPort | getPort | systemcomposer.arch.ArchitecturePort |
systemcomposer.arch.BasePort | systemcomposer.arch.Element

Introduced in R2019a

 systemcomposer.arch.ComponentPort

2-17

systemcomposer.arch.Connector
Class that represents connector between ports

Description
The connector class represents a connector between ports. This class is derived from
systemcomposer.arch.Element. This class inherits from systemcomposer.base.BaseElement
and implements the interface systemcomposer.base.BaseConnector.

Creation
Create a connector.

connector = connect(architecture,outports,inports)

Properties
Parent — Handle to parent architecture that owns connector
architecture object

Handle to parent architecture that owns connector, returned as a
systemcomposer.arch.Architecture object.

Name — Name of connector
character vector

Name of connector, returned as a character vector.
Data Types: char

SourcePort — Source of connection
architecture port object | component port object

Source of connection as an output port, returned as a systemcomposer.arch.ArchitecturePort
or systemcomposer.arch.ComponentPort object.

DestinationPort — Destination of connection
architecture port object | component port object

Destination of connection as an input port, returned as a
systemcomposer.arch.ArchitecturePort or systemcomposer.arch.ComponentPort object.

Object Functions
applyStereotype Apply stereotype to architecture model element
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element

2 Classes

2-18

getProperty Get property value corresponding to stereotype applied to element
destroy Remove and destroy model element
getEvaluatedPropertyValue Get evaluated value of property from component
getSourceElement Gets signal elements selected on source port for connection
getDestinationElement Gets signal elements selected on destination port for connection

See Also
connect | systemcomposer.arch.Element

Topics
“Create an Architecture Model”

Introduced in R2019a

 systemcomposer.arch.Connector

2-19

systemcomposer.arch.Element
Base class of all model elements

Description
The Element class is the base class for all System Composer model elements — architecture,
component, port, and connector. This class inherits from systemcomposer.base.BaseElement.

Creation
Create an architecture, component, port, or connector: addComponent, addPort, connect.

Properties
UUID — Universal unique identifier for model element
character vector

Universal unique identifier for model element, returned as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

ExternalUID — Unique external identifier
character vector

Unique external identifier, returned as a character vector. The external ID is preserved over the
lifespan of the element and through all operations that preserve the UUID.
Example: 'network_connector_01'
Data Types: char

Model — Handle to parent System Composer model of element
model object

Handle to parent model of element, returned as a systemcomposer.arch.Model object.

SimulinkHandle — Simulink handle for element
numeric value

Simulink handle for element, returned as a numeric value. This property is necessary for several
Simulink related work flows and for using Simulink Requirement APIs.
Example: handle = get(object,'SimulinkHandle')
Data Types: double

Object Functions
applyStereotype Apply stereotype to architecture model element

2 Classes

2-20

getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
setProperty Set property value corresponding to stereotype applied to element
getProperty Get property value corresponding to stereotype applied to element
destroy Remove and destroy model element
getEvaluatedPropertyValue Get evaluated value of property from component

See Also
systemcomposer.arch.Architecture | systemcomposer.arch.ArchitecturePort |
systemcomposer.arch.BasePort | systemcomposer.arch.Component |
systemcomposer.arch.ComponentPort | systemcomposer.arch.Connector

Topics
“Create an Architecture Model”

Introduced in R2019a

 systemcomposer.arch.Element

2-21

systemcomposer.arch.Model
Represent System Composer model

Description
Use the Model class to create and manage architecture objects in a System Composer model.

Creation
objModel = systemcomposer.createModel(modelName)

The createModel method is the constructor for the systemcomposer.arch.Model class.

Properties
Name — Name of model
character vector

Name of model, returned as a character vector.
Data Types: char

Architecture — Root architecture of model
architecture object

Root architecture of model, returned as a systemcomposer.arch.Architecture object.

SimulinkHandle — Simulink handle
numeric value

Simulink handle, returned as a numeric value.
Data Types: double

Profiles — Array of handles to profiles
array of profile objects

Array of handles to profiles attached to the model, returned as
systemcomposer.profile.Profile objects.

InterfaceDictionary — Dictionary object that holds interfaces
dictionary object

Dictionary object that holds interfaces, returned as a systemcomposer.interface.Dictionary
object. If the model is not linked to an external dictionary, this is a handle to the implicit dictionary

Views — Array of handles to model views
array of view architecture objects

2 Classes

2-22

Array of handles to model views, returned as an array of
systemcomposer.view.ViewArchitecture objects.
Example: objViewArchitecture = get(objModel,'Views')

Object Functions
open Open architecture model
close Close System Composer model
save Save the architecture model or data dictionary
find Find architecture elements using query
lookup Search for architecture element
createViewArchitecture Create view
openViews Open architecture views editor
applyProfile Apply profile to a model
removeProfile Remove profile from model
linkDictionary Link data dictionary to architecture model
unlinkDictionary Unlink data dictionary from architecture model
renameProfile Rename profile in model
iterate Iterate over model elements

See Also
Topics
“Create an Architecture Model”

Introduced in R2019a

 systemcomposer.arch.Model

2-23

systemcomposer.arch.VariantComponent
Represent variant component in System Composer model

Description
This class inherits from systemcomposer.arch.BaseComponent. A variant component allows you
to create multiple design alternatives for a component.

Creation
varComp = addVariantComponent(archObj,compName)

The addVariantComponent method creates an object method on the
systemcomposer.arch.Architecture class, and then creates a
systemcomposer.arch.VariantComponent object.

Properties
Parent — Architecture that owns variant component
architecture object

Architecture that owns variant component, returned as a systemcomposer.arch.Architecture
object.

Ports — Input and output ports
component port objects

Input and output ports of variant component, returned as systemcomposer.arch.ComponentPort
objects.

OwnedArchitecture — Architecture owned by variant component
architecture object

Architecture owned by variant component, returned as a systemcomposer.arch.Architecture
object.

Architecture — Architecture of active variant choice
architecture object

Architecture of the active variant choice, returned as a systemcomposer.arch.Architecture
object.

Object Functions
addChoice Add variant choices to variant component
setCondition Set condition on variant choice
setActiveChoice Set active choice on variant component
getChoices Get available choices in variant component

2 Classes

2-24

getActiveChoice Get active choice on variant component
getCondition Return variant control on choice within variant component
getStereotypes Get stereotypes applied on element of architecture model
removeStereotype Remove stereotype from model element
applyStereotype Apply stereotype to architecture model element
destroy Remove and destroy model element
getEvaluatedPropertyValue Get evaluated value of property from component
getPort Get port from component
getProperty Get property value corresponding to stereotype applied to element
setProperty Set property value corresponding to stereotype applied to element
isReference Find if component is reference to another model

See Also
Topics
“Decompose and Reuse Components”

Introduced in R2019a

 systemcomposer.arch.VariantComponent

2-25

systemcomposer.interface.Dictionary
Class that represents an element in the signal interface

Description
The systemcomposer.interface.Dictionary class represents the interface dictionary of an
architecture model.

Creation
Create a dictionary.

dict_id = systemcomposer.createDictionary('NewDictionary');

Properties
Interfaces — Interfaces defined in dictionary
array of signal interfaces

Interfaces defined in dictionary, returned as an array of
systemcomposer.interface.SignalInterface objects.

UUID — Universal unique identifier
character vector

Universal unique identifier for an interface dictionary, returned as a character vector.
Example: '91d5de2c-b14c-4c76-a5d6-5dd0037c52df'
Data Types: char

Object Functions
addInterface Create named interface in interface dictionary
save Save the architecture model or data dictionary
applyProfile Apply profile to a model
removeProfile Remove profile from model
removeInterface Remove named interface from interface dictionary
getInterface Get object for named interface in interface dictionary
getInterfaceNames Get names of all interfaces in interface dictionary
destroy Remove and destroy model element

See Also
systemcomposer.createDictionary | systemcomposer.interface.SignalElement |
systemcomposer.interface.SignalInterface | systemcomposer.openDictionary

Topics
“Define Interfaces”

2 Classes

2-26

Introduced in R2019a

 systemcomposer.interface.Dictionary

2-27

systemcomposer.interface.SignalElement
Class that represents element in signal interface

Description
The SignalElement class represents a single element in the signal interface.

Creation
Create a signal element.

elem = addElement(interface,'NewElement')

Properties
Interface — Handle to parent interface of element
signal interface object

Handle to parent interface of element, returned as a
systemcomposer.interface.SignalInterface object.

Name — Element name
character vector

Element name, returned as a character vector.
Data Types: char

Dimensions — Dimensions of element
array of positive integers

Dimensions of element, returned as an array of positive integers.
Data Types: integer

Type — Data type of element
character vector

Data type of element, returned as a character vector.
Data Types: char

Complexity — Complexity of element
'real' | 'complex'

Complexity of element, returned as 'real' or 'complex' character vectors.
Data Types: char

Units — Units of element
character vector

2 Classes

2-28

Units of element, returned as a character vector.
Data Types: char

Minimum — Minimum value for element
double

Minimum value for element, returned as a double.
Data Types: double

Maximum — Maximum value for element
double

Maximum value for element, returned as a double.
Data Types: double

Description — Description text for element
character vector

Description text for element, returned as a character vector.
Data Types: char

Object Functions
setName Set name for signal interface element
setType Set type for signal interface element
setDimensions Set dimensions for signal interface element
setUnits Set units for signal interface element
setComplexity Set complexity for signal interface element
setMinimum Set minimum for signal interface element
setMaximum Set maximum for signal interface element
setDescription Set description for signal interface element
destroy Remove and destroy model element

See Also
addElement | addInterface | getElement | getInterface | getInterfaceNames |
removeElement | removeInterface | systemcomposer.interface.SignalInterface

Topics
“Define Interfaces”

Introduced in R2019a

 systemcomposer.interface.SignalElement

2-29

systemcomposer.interface.SignalInterface
Class that represents structure of signal interface

Description
The SignalInterface class represents the structure of the signal interface at a given port.

Creation
Create an interface.

interface = addInterface(dictionary,name)

Properties
Dictionary — Handle to parent dictionary of interface
interface dictionary object

Handle to parent dictionary of interface, returned as a systemcomposer.interface.Dictionary
object.

Name — Interface name
character vector

Interface name, returned as a character vector.
Data Types: char

Elements — Elements in interface
array of interface element objects

Elements in interface, returned as an array of systemcomposer.interface.SignalElement
objects.

Object Functions
addElement Add signal interface element
removeElement Remove a signal interface element
getElement Get object for signal interface element
destroy Remove and destroy model element
applyStereotype Apply stereotype to architecture model element
removeStereotype Remove stereotype from model element
getStereotypes Get stereotypes applied on element of architecture model
getProperty Get property value corresponding to stereotype applied to element
setProperty Set property value corresponding to stereotype applied to element
getEvaluatedPropertyValue Get evaluated value of property from component

See Also
addInterface | systemcomposer.interface.SignalElement

2 Classes

2-30

Topics
“Define Interfaces”

Introduced in R2019a

 systemcomposer.interface.SignalInterface

2-31

systemcomposer.io.ModelBuilder
Model builder for System Composer architecture models

Description
Build System Composer models using the model builder utility class. Build System Composer models
with these sets of information: components and their position in architecture hierarchy, ports and
their mappings to components, connections between the components through ports, and interfaces in
architecture models and their mappings to ports.

Creation

Syntax
builder = systemcomposer.io.ModelBuilder(profile)

Description

builder = systemcomposer.io.ModelBuilder(profile) creates the ModelBuilder object.

Input Arguments

profile — Metadata XML file
character vector

File that contains a set of properties for any model element.

Output Arguments

builder — Model builder instantiation
ModelBuilder object

ModelBuilder object used to build a System Composer model.

Properties
Components — Component information
table

Table containing the hierarchical information of components, type of component (for example,
reference, variant, or adapter), stereotypes applied on component, and ability to set property values
of component.

Ports — Ports information
table

Table containing the information about ports, their mappings to components and interfaces, as well
as stereotypes applied on them.

2 Classes

2-32

Connections — Connections information
table

Table containing information about the connections between the ports defined in ports table also
stereotypes applied on connections.

Interfaces — Interfaces information
table

Table containing the definitions of various interfaces and their elements.

Utility Functions
Components Description
addComponent(compName, ID, ParentID) Add component with name and ID as a child of

component with ID as ParentID. In case of root,
ParentID is 0.

setComponentProperty(ID, varargin) Set stereotype on component with ID. Key value
pair of property name and value defined in the
stereotype can be passed as input. In this
example

 builder.setComponentProperty(ID, 'StereotypeName',...
'UAVComponent.PartDescriptor','ModelName',kind,'Manufacturer',domain)

ModelName and Manufacturer are properties
under stereotype PartDescriptor.

Ports Description
addPort(portName, direction, ID,
compID)

Add port with name and ID with direction (either
Input or Output) to component with ID as
compID.

setPropertyOnPort(ID, varargin) Set stereotype on port with ID. Key value pair of
the property name and the value defined in the
stereotype can be passed as input.

Connections Description
addConnection(connName, ID,
sourcePortID,destPortID)

Add connection with name and ID between ports
with sourcePortID (direction: Output) and
destPortID (direction: Input) defined in the
ports table.

setPropertyOnConnection(ID, varargin) Set stereotype on connection with ID. Key value
pair of the property name and the value defined
in the stereotype can be passed as input.

Interfaces Description
addInterface(interfaceName, ID) Add interface with name and ID to a data

dictionary.

 systemcomposer.io.ModelBuilder

2-33

Interfaces Description
addElementInInterface(elementName, ID,
interfaceID, datatype, dimensions,
units, complexity, Maximum, Minimum)

Add element with name and ID under an interface
with ID as interfaceID. Data types,
dimensions, units, complexity, and maximum and
minimum are properties of an element. These
properties are specified as strings.

addAnonymousInterface(ID, datatype,
dimensions, units, complexity,
Maximum, Minimum)

Add anonymous interface with ID and element
properties like data type, dimensions, units,
complexity, maximum and minimum. Data type of
an anonymous interface cannot be another
interface name. Anonymous interfaces do not
have elements like other interfaces.

Interfaces and Ports Description
addInterfaceToPort(interfaceID,
portID)

Link an interface with ID specified as
InterfaceID to a port with ID specified as
PortID.

Models Description
build(modelName) Build model with model name passed as input.

Logging and Reporting Description
getImportErrorLog() Get ErrorLogs generated while importing the

model . Called after the build() function
getImportReport() Get a report of the import. Called after the

build() function.

Examples

Import System Composer Architecture using Model Builder.

This example shows how to import architecture specifications into System Composer using the
systemcomposer.io.modelBuilder() utility class. These architecture specifications can be defined in
external source such as Excel file.

In system composer, an architecture is fully defined by three sets of information:

• Components and its position in architecture hierarchy
• Ports and its mapping to components
• Connections between the components through ports In this example, we also import interface data
definitions from external source.

• Interfaces in architecture models and its mapping to ports

This example uses systemcomposer.modelBuilder class to pass all of the above architecture
information and import a System Composer model.

In this example, architecture information of a small UAV system is defined in an Excel spreadsheet
and is used to create a System Composer architecture model.

2 Classes

2-34

External Source Files

• Architecture.xlsx : This Excel file contains hierarchical information of the architecture model. This
example maps the external source data to System Composer model elements. Below is the
mapping of information in column names to System Composer model elements.

 # Element : Name of the element. Either can be component or port name.
 # Parent : Name of the parent element.
 # Class : Can be either component or port(Input/Output direction of the port).
 # Domain : Mapped as component property. Property "Manufacturer" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Domain values in excel source file.
 # Kind : Mapped as component property. Property "ModelName" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Kind values in excel source file.
 # InterfaceName : If class is of port type. InterfaceName maps to name of the interface linked to port.
 # ConnectedTo : In case of port type, it specifies the connection to
 other port defined in format "ComponentName::PortName".

• DataDefinitions.xlsx : This excel file contains interface data definitions of the model. This example
assumes the below mapping between the data definitions in the source excel file and interfaces
hierarchy in System Composer :

 # Name : Name of the interface or element.
 # Parent : Name of the parent interface Name(Applicable only for elements) .
 # Datatype : Datatype of element. Can be another interface in format
 Bus: InterfaceName
 # Dimensions : Dimensions of the element.
 # Units : Unit property of the element.
 # Minimum : Minimum value of the element.
 # Maximum : Maximum value of the element.

Step 1. Instantiate the model builder class

You can instantiate the model builder class with a profile name.

Make sure the current directory is writable because this example will be creating files.

[stat, fa] = fileattrib(pwd);
if ~fa.UserWrite
 disp('This script must be run in a writable directory');
 return;
end
% Name of the model to build.
modelName = 'scExampleModelBuider';
% Name of the profile.
profile = 'UAVComponent';
% Name of the source file to read architecture information.
architectureFileName = 'Architecture.xlsx';

% Instantiate the ModelBuilder
builder = systemcomposer.io.ModelBuilder(profile);

Step 2. Build Interface Data Definitions.

Reading the information in external source file DataDefinitions.xlsx, we build the interface data
model.

Create MATLAB tables from source Excel file.

 systemcomposer.io.ModelBuilder

2-35

opts = detectImportOptions('DataDefinitions.xlsx');
opts.DataRange = 'A2'; % force readtable to start reading from the second row.
definitionContents = readtable('DataDefinitions.xlsx', opts);

% systemcomposer.io.IdService class generates unique ID for a
% given key
idService = systemcomposer.io.IdService();

for rowItr =1:numel(definitionContents(:,1))
 parentInterface = definitionContents.Parent{rowItr};
 if isempty(parentInterface)
 % In case of interfaces adding the interface name to model builder.
 interfaceName = definitionContents.Name{rowItr};
 % Get unique interface ID. getID(container,key) generates
 % or returns(if key is already present) same value for input key
 % within the container.
 interfaceID = idService.getID('interfaces',interfaceName);
 % Builder utility function to add interface to data
 % dictionary.
 builder.addInterface(interfaceName,interfaceID);
 else
 % In case of element read element properties and add the element to
 % parent interface.
 elementName = definitionContents.Name{rowItr};
 interfaceID = idService.getID('interfaces',parentInterface);
 % ElementID is unique within a interface.
 % Appending 'E' at start of ID for uniformity. The generated ID for
 % input element is unique within parent interface name as container.
 elemID = idService.getID(parentInterface,elementName,'E');
 % Datatype, dimensions, units, minimum and maximum properties of
 % element.
 datatype = definitionContents.DataType{rowItr};
 dimensions = string(definitionContents.Dimensions(rowItr));
 units = definitionContents.Units(rowItr);
 % Make sure that input to builder utility function is always a
 % string.
 if ~ischar(units)
 units = '';
 end
 minimum = definitionContents.Minimum{rowItr};
 maximum = definitionContents.Maximum{rowItr};
 % Builder function to add element with properties in interface.
 builder.addElementInInterface(elementName, elemID, interfaceID, datatype, dimensions, units, 'real', maximum, minimum);
 end
end

Step 3. Build Architecture Specifications.

Architecture specifications de Create MATLAB tables from source Excel file.

excelContents = readtable(architectureFileName);
% Iterate over each row in table.
for rowItr =1:numel(excelContents(:,1))
% Read each row of the excel file and columns.
 class = excelContents.Class(rowItr);
 Parent = excelContents.Parent(rowItr);
 Name = excelContents.Element{rowItr};
 % Populating the contents of table using the builder.

2 Classes

2-36

 if strcmp(class,'component')
 ID = idService.getID('comp',Name);
 % Root ID is by default set as zero.
 if strcmp(Parent,'scExampleSmallUAV')
 parentID = "0";
 else
 parentID = idService.getID('comp', Parent);
 end
 % Builder utility function to add component.
 builder.addComponent(Name,ID,parentID);
 % Reading the property values
 kind = excelContents.Kind{rowItr};
 domain = excelContents.Domain{rowItr};
 % *Builder to set stereotype and property values*
 builder.setComponentProperty(ID, 'StereotypeName','UAVComponent.PartDescriptor','ModelName',kind,'Manufacturer',domain);
 else
 % In this example, concatenation of port name and parent component name
 % is used as key to generate unique IDs for ports.
 portID = idService.getID('port',strcat(Name,Parent));
 % For ports on root architecture. compID is assumed as "0".
 if strcmp(Parent,'scExampleSmallUAV')
 compID = "0";
 else
 compID = idService.getID('comp',Parent);
 end
 % Builder utility function to add port.
 builder.addPort(Name, class, portID, compID);

 % InterfaceName specifies the name of the interface linked to port.
 interfaceName = excelContents.InterfaceName{rowItr};

 % Get interface ID. getID() will return the same IDs already
 % generated while adding interface in Step 2.
 interfaceID = idService.getID('interfaces',interfaceName);
 % Builder to map interface to port.
 builder.addInterfaceToPort(interfaceID, portID);

 % Reading the connectedTo information to build connections between
 % components.
 connectedTo = excelContents.ConnectedTo{rowItr};
 % connectedTo is in format -:
 % (DestinationComponentName::DestinationPortName).
 % For this example, considering the current port as source of the connection.
 if ~isempty(connectedTo)
 connID = idService.getID('connection',connectedTo);
 splits = split(connectedTo,'::');
 % Get the port ID of the connected port.
 % In this example, port ID is generated by concatenating
 % port name and parent component name. If port id is already
 % generated getID() function returns the same id for input key.
 connectedPortID = idService.getID('port',strcat(splits(2),splits(1)));
 % Using builder to populate connection table.
 sourcePortID = portID;
 destPortID = connectedPortID;
 % Builder to add connections.
 builder.addConnection(connectedTo,connID,sourcePortID,destPortID);
 end

 systemcomposer.io.ModelBuilder

2-37

 end
end

Step 3. Builder build method imports model from populated tables.

[model, importReport] = builder.build(modelName);

Close Model

bdclose(modelName);

See Also
Topics
“Import and Export Architecture Models”

Introduced in R2019b

2 Classes

2-38

systemcomposer.profile.Profile
Class that represents a profile

Description
The Profile class represents architecture profiles.

Creation
profile = systemcomposer.profile.Profile.createProfile(profileName);

Properties
Name — Name of profile
character vector

Name of profile, returned as a character vector.
Data Types: char

Description — Description text for profile
character vector

Description text for profile, returned as a character vector.
Data Types: char

Object Functions
createProfile Create profile
addStereotype Add stereotype to profile
getStereotype Find stereotype in profile by name
getDefaultStereotype Get default stereotype for profile
setDefaultStereotype Set default stereotype for profile
find Find profile by name
open Open profile
load Load profile from file
save Save profile as file
close Close profile
closeAll Close all open profiles
destroy Remove and destroy model element

See Also
loadProfile | systemcomposer.profile.Stereotype

Topics
“Define Profiles and Stereotypes”

 systemcomposer.profile.Profile

2-39

Introduced in R2019a

2 Classes

2-40

systemcomposer.profile.Property
Class that represents a property

Description
The Property class represents properties in a stereotype.

Creation
addProperty(stereotype,AttributeName,AttributeValue)

Properties
Name — Name of property
character vector

Name of property, returned as a character vector.
Data Types: char

Type — Property data type
character vector

Property data type, returned as a character array with a valid data type.
Data Types: char

Dimensions — Dimensions of property
positive integer array

Dimensions of property, returned as a positive integer array.
Data Types: double

Min — Minimum value
numeric

Minimum value, returned as a numeric value.
Data Types: double

Max — Maximum value
numeric

Maximum value, returned as a numeric value.
Data Types: double

Units — Property units
character vector

 systemcomposer.profile.Property

2-41

Property units, returned as a character vector.
Data Types: char

Object Functions
destroy Remove and destroy model element

See Also
addProperty | removeProperty | systemcomposer.profile.Profile |
systemcomposer.profile.Stereotype

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

2 Classes

2-42

systemcomposer.profile.Stereotype
Class that represents a stereotype

Description
The Stereotype class represents architecture stereotypes in a profile.

Creation
addStereotype(profile,name,type)

Properties
Name — Name of stereotype
character vector

Name of stereotype, returned as a character vector.
Data Types: char

Description — Description text for stereotype
character vector

Description text for stereotype, returned as a character vector.
Data Types: char

Icon — Icon for stereotype
character vector

Icon for stereotype, returned as a character vector.
Data Types: char

Parent — Stereotype from which stereotype inherits properties
stereotype object

Stereotype from which stereotype inherits properties, returned as a
systemcomposer.profile.Stereotype object.

AppliesTo — Element type to which stereotype can be applied
'Component' | 'Port' | 'Connector' | 'Interface'

Element type to which stereotype can be applied, returned as a character vector of the following
options: 'Component', 'Port', 'Connector', or 'Interface'.
Data Types: char

Abstract — Whether stereotype is abstract
true or 1 | false or 0

 systemcomposer.profile.Stereotype

2-43

Whether stereotype is abstract, returned as a logical of numeric 1 (true) or 0(false). If true, then
stereotype cannot be directly applied on model elements, but instead serves as a parent for other
stereotypes.
Data Types: logical

Object Functions
addProperty Define a custom property for a stereotype
removeProperty Remove property from stereotype
find Find stereotype by name
setDefaultComponentStereotype Set default stereotype for components
setDefaultConnectorStereotype Set default stereotype for connectors
setDefaultPortStereotype Set default stereotype for ports
destroy Remove and destroy model element

See Also
addStereotype | getStereotype | removeStereotype | systemcomposer.profile.Profile

Topics
“Define Profiles and Stereotypes”

Introduced in R2019a

2 Classes

2-44

systemcomposer.query.Constraint
Represent query constraint

Description
The systemcomposer.query.Constraint class is a base class for all System Composer query
constraints.

Object Functions
HasStereotype Create query to select architecture elements with stereotype based on

specified sub-constraint
Property Create query to select non-evaluated values for properties or stereotype

properties for objects based on specified property name
PropertyValue Create query to select property from object or stereotype property and

then evaluate property value
HasPort Create query to select architecture elements with port on component

based on specified sub-constraint
HasInterface Create query to select architecture elements with interface on port based

on specified sub-constraint
HasInterfaceElement Create query to select architecture elements with interface element on

interface based on specified sub-constraint
IsInRange Create query to select a range of property values
AnyComponent Create query to select all components in model
IsStereotypeDerivedFrom Create query to select stereotype derived from a fully qualified name

See Also
createViewArchitecture | find

Topics
“Creating Architectural Views Programmatically”

Introduced in R2019b

 systemcomposer.query.Constraint

2-45

systemcomposer.view.BaseViewComponent
Base class for view components

Description
This class inherits from systemcomposer.view.ViewElement and implements the interface
systemcomposer.base.BaseComponent.

Properties
Name — Name of view component
character vector

Name of view component, returned as a character vector.
Example: name = get(objBaseViewComponent,'Name')
Example: set(objBaseViewComponent,'Name',name)

Parent — Handle to parent view architecture of component
view architecture object

Handle to the parent view architecture of component, returned as a
systemcomposer.view.ViewArchitecture object.
Example: parent = get(objBaseViewComponent,'Parent')

Architecture — Handle to view architecture of component
view architecture object

Handle to the view architecture of component, returned as a
systemcomposer.view.ViewArchitecture object.
Example: viewArch = get(objBaseViewComponent,'ViewArchitecture')

See Also
systemcomposer.view.ComponentOccurrence | systemcomposer.view.ViewArchitecture |
systemcomposer.view.ViewComponent | systemcomposer.view.ViewElement

Topics
“Create Architecture Views Interactively”
“Creating Architectural Views Programmatically”

Introduced in R2019b

2 Classes

2-46

systemcomposer.view.ComponentOccurrence
Shadow of component from composition in view

Description
This class inherits from systemcomposer.view.BaseViewComponent.

Properties
Component — Handle to composition
base component object

Handle to composition component of this occurrence, returned as a
systemcomposer.arch.BaseComponent object.
Example: handle = get(object,'Component')

See Also
systemcomposer.view.BaseViewComponent | systemcomposer.view.ViewArchitecture |
systemcomposer.view.ViewComponent | systemcomposer.view.ViewElement

Topics
“Create Architecture Views Interactively”
“Creating Architectural Views Programmatically”

Introduced in R2019b

 systemcomposer.view.ComponentOccurrence

2-47

systemcomposer.view.ViewArchitecture
View components in architecture view

Description
A view architecture describes a set of view components that make up a view. This class inherits from
the systemcomposer.view.ViewElement class and implements the
systemcomposer.base.BaseArchitecture interface.

Properties
Name — Name of architecture
character vector

Name of architecture derived from the parent component or model name to which the architecture
belongs, returned as a character vector.
Example: name = get(objViewArchitecture,'Name')
Data Types: char

IncludeReferenceModels — Control inclusion of referenced models
true or 1 | false or 0

Control inclusion of referenced models, returned as a numeric or logical with values 1 (true) or 0
(false).
Example: included = get(objViewArchitecture,'IncludeReferenceModels')
Data Types: logical

Color — Color of view architecture
character vector

Color of view architecture, returned as a character vector as a name 'blue', 'black', or 'green'
or as a RGB value encoded in a hexadecimal string '#FF00FF' or '#DDDDDD'. An invalid color string
results in an error.
Example: color = get(objViewArchitecture,'Color')

Description — Description of view architecture
character vector

Description of view architecture, returned as a character vector.
Example: description = get(objViewArchitecture,'Description')
Example: set(objViewArchitecture,'Description',description)
Data Types: char

Parent — Component that owns view architecture
base view component object

2 Classes

2-48

Component that owns view architecture, returned as a
systemcomposer.view.BaseViewComponent object. For a root view architecture, returns an
empty handle.
Example: parentComponent = get(objViewArchitecture,'Parent')

Components — Array of handles to child components
array of base view component objects

Array of handles to the set of child components of this view architecture, returned as an array of
systemcomposer.view.BaseViewComponent objects.
Example: childComponents = get(objViewArchitecture,'Components')

Methods
addComponent Add component to view given path
removeComponent Remove component from view
createViewComponent Create new view component

See Also
systemcomposer.view.BaseViewComponent | systemcomposer.view.ComponentOccurrence
| systemcomposer.view.ViewComponent | systemcomposer.view.ViewElement

Topics
“Create Architecture Views Interactively”
“Creating Architectural Views Programmatically”

Introduced in R2019b

 systemcomposer.view.ViewArchitecture

2-49

systemcomposer.view.ViewComponent
View component within architecture view

Description
A view component is a component that exist only in the view it is created in. These components do not
exist in the composition. This class inherits from systemcomposer.view.BaseViewComponent.

See Also
systemcomposer.view.BaseViewComponent | systemcomposer.view.ComponentOccurrence
| systemcomposer.view.ViewArchitecture | systemcomposer.view.ViewElement

Topics
“Create Architecture Views Interactively”
“Creating Architectural Views Programmatically”

Introduced in R2019b

2 Classes

2-50

systemcomposer.view.ViewElement
Base class of all view elements

Description
Base class of all view elements. This class inherits from systemcomposer.base.BaseElement.

Properties
ZCIdentifier — Identifier of object
character vector

Gets the identifier of an object. Used by Simulink Requirements.
Example: identifier = get(objViewElement,'ZCIdentifier')
Data Types: char

See Also
systemcomposer.view.BaseViewComponent | systemcomposer.view.ComponentOccurrence
| systemcomposer.view.ViewArchitecture | systemcomposer.view.ViewComponent

Topics
“Create Architecture Views Interactively”
“Creating Architectural Views Programmatically”

Introduced in R2009b

 systemcomposer.view.ViewElement

2-51

Blocks

3

Component
Add component to an architecture model

Description
Use a Component block to represent a structural or behavioral element at any level of an architecture
model hierarchy. Add ports to the block for connecting to other components. Define an interface for
the ports and add properties using stereotypes.

Ports
Input Port

Source — Provide connection from another component

Output Port

Destination — Provide connection to another component

See Also
Blocks
Adapter | Reference Component | Variant Component

Topics
“Implement Components in Simulink”

Introduced in R2019a

3 Blocks

3-2

Reference Component
Link to an architectural definition or Simulink behavior

Description
Use a Reference Component block to link an architectural definition of a component or a Simulink
behavior.

Ports
Input Port

Source — Provide connection from another component

Output Port

Destination — Provide connection to another component

See Also
Blocks
Adapter | Component | Variant Component

Topics
“Implement Components in Simulink”

Introduced in R2019a

 Reference Component

3-3

Variant Component
Add components with alternative designs

Description
Use a Variant Component block to create multiple design alternatives for a component.

Ports
Input Port

Source — Provide connection from another component

Output Port

Destination — Provide connection to another component

See Also
Blocks
Adapter | Component | Reference Component | Subsystem

Topics
“Decompose and Reuse Components”

Introduced in R2019a

3 Blocks

3-4

Adapter
Connect components with different interfaces

Description
The Adapter block allows you to adapt dissimilar interfaces. Connect the source and destination ports
of components that have different interface definitions.

Limitations
• When used for structural interface adaptations, the Adapter block uses bus element ports

internally and, subsequently, only supports virtual buses.

Ports
Input Port

Source — Provide connection from a component

Output Port

Destination — Provide connection to a component

See Also
Blocks
Component | Reference Component | Variant Component

Topics
“Assign Interfaces to Ports”
“Interface Adapter”

Introduced in R2019a

 Adapter

3-5

Sequence Viewer
Visualize messages, events, states, transitions, and functions

Description
The Sequence Viewer visualizes message flow, function calls, and state transitions.

Use the Sequence Viewer to see the interchange of messages, events, function calls in Simulink
behavior models in System Composer and between Stateflow® charts in Simulink models.

In the Sequence Viewer window, you can view event data related to Stateflow chart execution and the
exchange of messages between Stateflow charts. The Sequence Viewer window shows messages as
they are created, sent, forwarded, received, and destroyed at different times during model execution.
The Sequence Viewer window also displays state activity, transitions, and function calls to Stateflow
graphical functions, Simulink functions, and MATLAB functions. For more information, see “Use the
Sequence Viewer Block to Visualize Messages, Events, and Entities”.

Open the Sequence Viewer
• Simulink Toolstrip: On the Simulation tab, in the Review Results section, click Sequence

Viewer.

Examples

3 Blocks

3-6

Using the Sequence Viewer Tool

1 To activate logging events, in the Simulink Toolstrip, under the Simulation tab, in the Prepare
section, click Log Events.

2 Simulate your model.
3 To open the tool, in the Simulink Toolstrip, under the Simulation tab, in the Review Results

section, click Sequence Viewer.

• “Use the Sequence Viewer Block to Visualize Messages, Events, and Entities”
• “Simulink Messages Overview”

Parameters
Sequence Viewer Time Precision — Digits for time increment precision
3 (default) | scalar

Number of digits for time increment precision. When using a variable step solver, change this
parameter to adjust the time precision for the sequence viewer. By default the block supports 3 digits
of precision. Minimum and maximum precision are 1 and 16, respectively.

Suppose the block displays two events that occur at times 0.1215 and 0.1219. Displaying these two
events precisely requires 4 digits of precision. If the precision is 3, then the block displays two events
at time 0.121.

Programmatic Use
Block Parameter: SequenceViewerTimePrecision
Type: character vector
Values: '3' | scalar
Default: '3'

Sequence Viewer History — Maximum number of previous events to display
1000 (default) | scalar

Total number of events before the last event to display. Minimum and maximum number of events are
0 and 25000, respectively.

For example, if History is 5 and there are 10 events in your simulation, then the block displays 6
events, including the last event and the five events prior the last event. Earlier events are not
displayed. The time ruler is greyed to indicate the time between the beginning of the simulation and
the time of the first displayed event.

Each send, receive, drop, or function call event is counted as one event, even if they occur at the
same simulation time.

Programmatic Use
Block Parameter: SequenceViewerHistory
Type: character vector
Values: '1000' | scalar
Default: '1000'

 Sequence Viewer

3-7

See Also
Topics
“Use the Sequence Viewer Block to Visualize Messages, Events, and Entities”
“Simulink Messages Overview”

Introduced in R2020b

3 Blocks

3-8

	Functions
	addChoice
	addComponent
	addComponent
	addVariantComponent
	addElement
	addPort
	addInterface
	addProperty
	addStereotype
	AnyComponent
	applyProfile
	applyStereotype
	batchApplyStereotype
	close
	close
	close
	systemcomposer.allocation.Allocation
	allocate
	systemcomposer.allocation.AllocationScenario
	deallocate
	destroy
	getAllocation
	getAllocatedFrom
	getAllocatedTo
	closeAll
	closeAll
	connect
	createAllocationSet
	createAnonymousInterface
	systemcomposer.createDictionary
	systemcomposer.createModel
	createProfile
	createScenario
	createSimulinkBehavior
	createViewArchitecture
	createViewComponent
	deleteInstance
	deleteScenario
	destroy
	systemcomposer.exportModel
	systemcomposer.extractArchitectureFromSimulink
	systemcomposer.allocation.editor
	find
	find
	find
	find
	getActiveChoice
	getChoices
	getCondition
	getDefaultStereotype
	getDestinationElement
	getElement
	getEvaluatedPropertyValue
	getInterface
	getInterfaceNames
	getPort
	getProperty
	getScenario
	getSourceElement
	getStereotype
	getStereotypes
	getValue
	HasInterface
	HasInterfaceElement
	HasPort
	HasStereotype
	systemcomposer.importModel
	inlineComponent
	instantiate
	isArchitecture
	isComponent
	isConnector
	IsInRange
	isPort
	isReference
	IsStereotypeDerivedFrom
	iterate
	linkDictionary
	linkToModel
	load
	load
	loadInstance
	systemcomposer.loadModel
	systemcomposer.loadProfile
	lookup
	makeVariant
	open
	open
	open
	systemcomposer.openDictionary
	systemcomposer.openModel
	openViews
	Property
	PropertyValue
	removeComponent
	removeElement
	removeInterface
	removeProfile
	removeProperty
	removeStereotype
	renameProfile
	save
	save
	save
	saveAsModel
	saveInstance
	setActiveChoice
	setComplexity
	setCondition
	setDefaultComponentStereotype
	setDefaultConnectorStereotype
	setDefaultPortStereotype
	setDefaultStereotype
	setDescription
	setDimensions
	setMaximum
	setMinimum
	setName
	setName
	setInterface
	setProperty
	setType
	setUnits
	setValue
	unlinkDictionary
	updateInstance

	Classes
	systemcomposer.allocation.AllocationSet
	systemcomposer.analysis.Instance
	systemcomposer.arch.Architecture
	systemcomposer.arch.ArchitecturePort
	systemcomposer.arch.BaseComponent
	systemcomposer.arch.BasePort
	systemcomposer.arch.Component
	systemcomposer.arch.ComponentPort
	systemcomposer.arch.Connector
	systemcomposer.arch.Element
	systemcomposer.arch.Model
	systemcomposer.arch.VariantComponent
	systemcomposer.interface.Dictionary
	systemcomposer.interface.SignalElement
	systemcomposer.interface.SignalInterface
	systemcomposer.io.ModelBuilder
	systemcomposer.profile.Profile
	systemcomposer.profile.Property
	systemcomposer.profile.Stereotype
	systemcomposer.query.Constraint
	systemcomposer.view.BaseViewComponent
	systemcomposer.view.ComponentOccurrence
	systemcomposer.view.ViewArchitecture
	systemcomposer.view.ViewComponent
	systemcomposer.view.ViewElement

	Blocks
	Component
	Reference Component
	Variant Component
	Adapter
	Sequence Viewer

